【題目】我市某超市舉行店慶活動,對甲、乙兩種商品實行打折銷售,打折前,購買2件甲商品和3件乙商品需要180元;購買1件甲商品和4件乙商品需要200元,而店慶期間,購買10件甲商品和10件乙商品僅需520元,這比打折前少花多少錢?

【答案】【解答】解:設打折前甲商品的單價為x元,乙商品的單價為y元,
由題意得:,
解得:
∵打折后實際花費:10×(24+44)=680(元),則購買10件甲商品和10件乙商品需要520元,
∴這比不打折前少花160元.
答:這比不打折前少花160元.
【解析】設甲商品單價為x元,乙商品單價為y元,根據(jù)購買3件甲商品和1件乙商品需用180元;購買1件甲商品和4件乙商品需用200元,列出方程組,繼而可計算購買10件甲商品和10件乙商品需要的花費,也可得出比不打折前少花多少錢.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某水庫養(yǎng)殖魚的有關情況,從該水庫多個不同位置捕撈出200條魚,稱得每條魚的質量(單位:千克),并將所得數(shù)據(jù)分組,繪制了直方圖
(1)根據(jù)直方圖提供的信息,這組數(shù)據(jù)的中位數(shù)落在范圍內;
(2)估計數(shù)據(jù)落在1.00~1.15中的頻率是;
(3)將上面捕撈的200條魚分別作一記號后再放回水庫.幾天后再從水庫的多處不同的位置捕撈150條魚,其中帶有記號的魚有10條,請根據(jù)這一情況估算該水庫中魚的總條數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點為B(2,1),且過點A(0,2),直線y=x與拋物線交于點D,E(點E在對稱軸的右側),拋物線的對稱軸交直線y=x于點C,交x軸于點G,EF⊥x軸,垂足為F,點P在拋物線上,且位于對稱軸的右側,PQ⊥x軸,垂足為點Q,△PCQ為等邊三角形

(1)求該拋物線的解析式;
(2)求點P的坐標;
(3)求證:CE=EF;
(4)連接PE,在x軸上點Q的右側是否存在一點M,使△CQM與△CPE全等?若存在,試求出點M的坐標;若不存在,請說明理由.[注:3+=(+1)2].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解七年級男生體質健康情況,隨機抽取若干名男生進行測試,測試結果分為優(yōu)秀、良好、合格、不合格四個等級,統(tǒng)計整理數(shù)據(jù)并繪制圖1、圖2兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息回答下列問題:

(1)本次接收隨機抽樣調查的男生人數(shù)為 人,扇形統(tǒng)計圖中“良好”所對應的圓心角的度數(shù)為 。
(2)補全條形統(tǒng)計圖中“優(yōu)秀”的空缺部分。
(3)若該校七年級共有男生480人,請估計全年級男生體質健康狀況達到“良好”的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關系如圖1所示,櫻桃價格z(單位:元/千克)與上市時間x(單位:天)的函數(shù)關系式如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;

(2)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;

(3)試比較第10天與第12天的銷售金額哪天多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.

(1)求證:AC=CD;
(2)若OC=,求BH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生體質,某中學在體育課中加強了學生的長跑訓練.在一次女子800米耐力測試中,小靜和小茜在校園內200米的環(huán)形跑道上同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時間是起跑后的第秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生來自甲、乙、丙三個地區(qū),其人數(shù)比為2:3:5,如圖所示的扇形圖表示上述分布情況.已知來自甲地區(qū)的為180人,則下列說法不正確的是【 】

A.扇形甲的圓心角是72°

B.學生的總人數(shù)是900人

C.丙地區(qū)的人數(shù)比乙地區(qū)的人數(shù)多180人

D.甲地區(qū)的人數(shù)比丙地區(qū)的人數(shù)少180人

查看答案和解析>>

同步練習冊答案