下列各組長度的3條線段,不能構(gòu)成三角形的是( )
A.3cm,5cm,10cm
B.5cm,4cm,9cm
C.4cm,6cm,9cm
D.2cm,3cm,4cm
【答案】分析:根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”進行分析.
解答:解:A、3+5<10,則不能構(gòu)成三角形;
B、5+4=9,則不能構(gòu)成三角形;
C、4+6>9,則能構(gòu)成三角形;
D、2+3>4,則能構(gòu)成三角形;
故選:A、B.
點評:此題考查的知識點是三角形的三邊關(guān)系,判斷能否組成三角形的簡便方法是看其中較小的兩個數(shù)的和是否大于第三個數(shù)即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

我們學習了“弧、弦、圓心角的關(guān)系”,實際上我們還可以得到“圓心角、弧、弦、弦心距之間的關(guān)系”如下:圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對應(yīng)的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說成圓心到弦的垂線段的長度.)
請直接運用圓心角、弧、弦、弦心距之間的關(guān)系解答下列問題.
如圖(2),O是∠EPF的平分線上一點,以點O為圓心的圓與角的兩邊分別交子點A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點P在圓上或圓內(nèi),上述結(jié)論還成立嗎?若不成立,請說明理由;若成立,請加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們學習了“弧、弦、圓心角的關(guān)系”,實際上我們還可以得到“圓心角、弧、弦、弦心距之間的關(guān)系”如下:圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對應(yīng)的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說成圓心到弦的垂線段的長度.)
請直接運用圓心角、弧、弦、弦心距之間的關(guān)系解答下列問題.
如圖(2),O是∠EPF的平分線上一點,以點O為圓心的圓與角的兩邊分別交子點A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點P在圓上或圓內(nèi),上述結(jié)論還成立嗎?若不成立,請說明理由;若成立,請加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們學習了“弧、弦、圓心角的關(guān)系”,實際上我們還可以得到“圓心角、弧、弦、弦心距之間的關(guān)系”如下:圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對應(yīng)的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說成圓心到弦的垂線段的長度.)
請直接運用圓心角、弧、弦、弦心距之間的關(guān)系解答下列問題.
如圖(2),O是∠EPF的平分線上一點,以點O為圓心的圓與角的兩邊分別交子點A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點P在圓上或圓內(nèi),上述結(jié)論還成立嗎?若不成立,請說明理由;若成立,請加以證明.

精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案