如圖,在□ABCD中,過點C作CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉90°得到線段EF,點P為直線CD上一點(不與點C重合).
(1)在圖1中畫圖探究:
當點P在CD延長線上時,連結EP并把EP繞點E逆時針旋轉90°得到線段EQ.作直線QF交直線CD于H,求證:QF⊥CD.
(2)探究:結合(1)中的畫圖步驟,分析線段QH、PH與CE之間是否存在一種特定的數(shù)量關系?請在下面的空格中寫出你的結論;若存在,直接填寫這個關系式.
①當點P在CD延長線上且位于H點右邊時,
QH-PH=2CE
QH-PH=2CE
;
②當點P在邊CD上時,
QH+PH=2CE
QH+PH=2CE

(3)若AD=2AB=6,AE=1,連接DF,過P、F兩點作⊙M,使⊙M同時與直線CD、DF相切,求⊙M的半徑是多少?
分析:(1)根據(jù)旋轉的性質可得PE=QE,EF=ED,然后根據(jù)同角的余角相等求出∠PEC=∠QEF,再利用“邊角邊”證明△PEC和△QEF全等,根據(jù)全等三角形對應角相等可得∠QFE=∠PCE,再求出EF∥CD,然后根據(jù)兩直線平行,同位角相等求出∠QHC=90°,從而得證;
(2)根據(jù)全等三角形對應邊相等可得QF=PC,再證明得到四邊形EFHC是正方形,然后根據(jù)正方形的性質可得CH=FH=CE,然后分點P在CD延長線上和邊CD上兩種情況饒了求解;
(3)求出DE的長,再利用勾股定理列式求出EC,然后求出DH,再次利用勾股定理列式求出FD,過點M作MN⊥FH于N,可得四邊形PMNH是矩形,設⊙M的半徑是r,然后分①點P在點D的右邊時,在Rt△MNF中,表示出FN、MN,利用勾股定理列出方程求解即可;②點P在點D的左邊時,在Rt△MNF中,表示出FN、MN,利用勾股定理列出方程求解即可.
解答:解:(1)由旋轉的性質得,PE=QE,EF=ED,
∵∠QEF+∠FEP=∠PEQ=90°,
∠PEC+∠FEP=∠CEF=90°,
∴∠PEC=∠QEF,
在△PEC和△QEF中,
PE=QE
∠PEC=∠QEF
EF=ED
,
∴△PEC≌△QEF(SAS),
∴∠QFE=∠PCE=90°,
∵∠FEC+∠PCE=90°+90°=180°,
∴EF∥CD,
∴∠QHC=∠QFE=90°,
∴QF⊥CD;

(2)∵△PEC≌△QEF,
∴QF=PC,
∵∠PCE=∠CEF=∠QHC=90°,CE=EF,
∴四邊形EFHC是正方形,
∴CH=FH=CE,
①如圖1,當點P在CD延長線上且位于H點右邊時,QH=QF+FH=PC+FH=PH+CH+FH=PH+2CE,
∴QH-PH=2CE;
②如圖2,當點P在邊CD上時,QH=QF+FH=PC+FH=CH-PH+FH=2CE-PH,
∴QF+PH=2CE;

(3)∵AD=6,AE=1,
∴DE=5,
在Rt△CDE中,CE=
DE2-CD2
=
52-32
=4,
∴DH=CH-CD=CE-CD=4-3=1,
在Rt△DFH中,F(xiàn)D=
FH2+DH2
=
42+12
=
17

如圖,過點M作MN⊥FH于N,
則四邊形PMNH是矩形,
∵⊙M同時與直線CD、DF相切,
∴DP=FD=
17

設⊙M的半徑是r,
①點P在點D的右邊時,在Rt△MNF中,F(xiàn)N=4-r,MN=
17
-1,
由勾股定理得,F(xiàn)N2+MN2=MF2,
即(4-r)2+(
17
-1)2=r2,
解得r=
17-
17
4
,
②點P在點D的左邊時,在Rt△MNF中,F(xiàn)N=r-4,MN=
17
+1,
由勾股定理得,F(xiàn)N2+MN2=MF2
即(r-4)2+(
17
+1)2=r2,
解得r=
17+
17
4

綜上所述,⊙M的半徑是
17-
17
4
17+
17
4
點評:本題考查了平行四邊形的性質,勾股定理的應用,旋轉的性質,全等三角形的判定與性質,切線長定理,(3)難點在于作輔助線構造出全等三角形和矩形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案