【題目】ABC中,ACB=90°,DAB的中點,過點BCBE=∠A,BE與射線CA相交于點E,與射線CD相交于點F

1)如圖,當點E在線段CA上時,求證:BECD;

2)若BE=CD,那么線段ACBC之間具有怎樣的數(shù)量關(guān)系?并證明你所得到的結(jié)論;

3)若BDF是等腰三角形,求A的度數(shù).

【答案】1)證明見解析;(2AC=2BC;(322.5°或67.5°.

【解析】

1)根據(jù)角之間的等量關(guān)系及中點的特點即可得出答案;

2)根據(jù)題意易證△BCE∽△ACB,根據(jù)相似三角形比例關(guān)系即可得出結(jié)論;

3)分①點E在線段CA上時;②點E在線段CA延長線上討論求解.

1)∵∠ACB=90°,DAB的中點,∴CD=AD,∴∠A=DCA

∵∠CBE=A,∴∠DCA=CBE

∵∠CBE+BEC=90°,∴∠BEC+DCA =90°,∴BECD;

2)線段ACBC之間的數(shù)量關(guān)系是:AC=2BC

∵∠CBE=A,∠BCE=ACB,∴△BCE∽△ACB,∴

BE=CD,∴,∴AC=2BC

3)∵△BDF是等腰三角形,∠BFD=90°,∴∠BDF=45°.

①當點E在線段CA上時,如圖1,∠ABDF=22.5°;

②當點E在線段CA延長線上時,如圖2,∠CDA=BDF=45°,∠BAC

綜上所述:∠BAC的度數(shù)為22.5°或67.5°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是經(jīng)過∠BCA的頂點C的一條直線,CA=CB,E,F(xiàn)是直線CD上的兩點,且∠BEC=CFA=α.

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:

①如圖(a),若∠BCA=90°,α=90°,則BE________CF,EF________|BE-AF|(“>”“<”“=”);

②如圖(b),若0°<BCA<180°,請?zhí)砑右粋關(guān)于α與∠BCA關(guān)系的條件________,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立;

(2)如圖(c),若直線CD經(jīng)過∠BCA的外部,∠BCA=α,請寫出EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點PA點出發(fā),以cm/s的速度,沿ACC作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當P運動到C點時,P、Q都停止運動.設(shè)點P運動的時間為ts

1)當P異于AC時,請說明PQ∥BC;

2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或列方程組解應(yīng)用題.

老京張鐵路是1909年由“中國鐵路之父”詹天佑主持設(shè)計建造的中國第一條干線鐵路,全長約210千米,用“人”字形鐵軌鋪筑的方式解決了火車上山的問題.京張高鐵是2022年北京至張家口冬奧會的重點配套交通基礎(chǔ)設(shè)施,全長約175千米,預(yù)計2019年底建成通車.京張高鐵的預(yù)設(shè)平均速度將是老京張鐵路的5倍,可以提前5個小時到達,求京張高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)是(

1)當時,是反比例函數(shù)

2)如果,那么成反比例

3)如果是反比例函數(shù),則

4)如果成正比例,成反比例,則成反比例

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,點EAB上,把ABC沿CE折疊后,點B恰好與斜邊AC的中點D重合.

(1)求證:△ACE為等腰三角形;

(2)AB=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BDCF的數(shù)量關(guān)系是   ;BDCF位置關(guān)系是   

(2)拓展探究:如圖2,當△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

(3)解決問題:如圖3,當△ABC繞點A逆時針旋轉(zhuǎn)45°時,延長BDCF于點H.

求證:BD⊥CF;

AB=2,AD=3時,則線段DH的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車同時從A地出發(fā),各自都以自己的速度勻速向B地行駛,甲車先到B地,停車1小時后按原速勻速返回,直到兩車相遇.已知,乙車的速度是60千米/時,如圖是兩車之間的距離y(千米)與乙車行駛的時間x(小時)之間的函數(shù)圖象,則下列說法不正確的是(  )

A.A、B兩地之間的距離是450千米

B.乙車從出發(fā)到與甲車返回時相遇所用的時間是6.6小時

C.甲車的速度是80千米/

D.M的坐標是(690

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是二次函數(shù)圖象的一部分,圖象過點,二次函數(shù)圖象對稱軸為直線,給出五個結(jié)論:①;③當時,的增大而增大;④方程的根為,;其中正確結(jié)論是(

A. ①②③ B. ①③④ C. ②③④ D. ③④⑤

查看答案和解析>>

同步練習冊答案