【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.其中說(shuō)法正確的是(

A.甲的速度是60/分鐘B.乙的速度是80/分鐘

C.點(diǎn)的坐標(biāo)為D.線(xiàn)段所表示的函數(shù)表達(dá)式為

【答案】D

【解析】

根據(jù)圖象信息,甲60分鐘行駛2400米,根據(jù)速度=路程÷時(shí)間可得甲的速度;由甲、乙兩人的速度和為2400÷24=100/分鐘,減去甲的速度得出乙的速度,再根據(jù)“路程、時(shí)間與速度”的關(guān)系解答即可;求出乙從圖書(shū)館回學(xué)校的時(shí)間即A點(diǎn)的橫坐標(biāo),用A點(diǎn)的橫坐標(biāo)乘以甲的速度得出A點(diǎn)的縱坐標(biāo),再將A、B兩點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法即可求出線(xiàn)段AB所表示的函數(shù)表達(dá)式.

解:A、根據(jù)圖象信息,甲的速度為2400÷60=40/分鐘,故A選項(xiàng)錯(cuò)誤;

B、∵甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),t=24分鐘時(shí)甲乙兩人相遇,

∴甲、乙兩人的速度和為2400÷24=100/分鐘,

∴乙的速度為100-40=60/分鐘,B選項(xiàng)錯(cuò)誤;

C、乙從圖書(shū)館回學(xué)校的時(shí)間為2400÷60=40分鐘,

40×40=1600,

A點(diǎn)的坐標(biāo)為(40,1600),故C選項(xiàng)錯(cuò)誤;

D、設(shè)線(xiàn)段AB所表示的函數(shù)表達(dá)式為y=kt+b,

A40,1600),B60,2400),

,

解得:

∴線(xiàn)段所表示的函數(shù)表達(dá)式為,故D選項(xiàng)正確;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(3,0),C(1,﹣1),ACx軸于點(diǎn)P.

(1)ACB的度數(shù)為_____

(2)P點(diǎn)坐標(biāo)為______;

(3)以點(diǎn)O為位似中心,將△ABC放大為原來(lái)的2倍,請(qǐng)?jiān)趫D中畫(huà)出所有符合條件的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D是△ABC的邊AB上一點(diǎn),點(diǎn)EAC的中點(diǎn),過(guò)點(diǎn)CCFABDE延長(zhǎng)線(xiàn)于點(diǎn)F

1)求證:ADCF

2)連接AF,CD,求證:四邊形ADCF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AD是邊BC上的中線(xiàn),過(guò)點(diǎn)AAEBC,過(guò)點(diǎn)DDEABDEAC、AE分別交于點(diǎn)O、點(diǎn)E,聯(lián)結(jié)EC

1)求證:四邊形ADCE是平行四邊形;

2)當(dāng)∠BAC90°時(shí),求證:四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蔬菜基地種植了娃娃菜和油菜兩種蔬菜共畝,設(shè)種植娃娃菜畝,總收益為萬(wàn)元,有關(guān)數(shù)據(jù)見(jiàn)下表:

成本(單位:萬(wàn)元/畝)

銷(xiāo)售額(單位:萬(wàn)元/畝)

娃娃菜

2.4

3

油菜

2

2.5

1)求關(guān)于的函數(shù)關(guān)系式(收益 = 銷(xiāo)售額 成本);

2)若計(jì)劃投入的總成本不超過(guò)萬(wàn)元,要使獲得的總收益最大,基地應(yīng)種植娃娃菜和油菜各多少畝?

3)已知娃娃菜每畝地需要化肥kg,油菜每畝地需要化肥kg,根據(jù)(2)中的種植畝數(shù),基地計(jì)劃運(yùn)送所需全部化肥,為了提高效率,實(shí)際每次運(yùn)送化肥的總量是原計(jì)劃的倍,結(jié)果運(yùn)送完全部化肥的次數(shù)比原計(jì)劃少次,求基地原計(jì)劃每次運(yùn)送多少化肥.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線(xiàn)分別交軸,軸于點(diǎn),,點(diǎn)在第一象限,連接,,四邊形是正方形.

1)如圖1,求直線(xiàn)的解析式;

2)如圖2,點(diǎn)分別在上,點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為點(diǎn),點(diǎn)上,且,連接,,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量的取值范圍;

3)如圖3,在(2)的條件下,連接,,,點(diǎn)上,且,點(diǎn)上,連接于點(diǎn),,且,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:ABCADE是等邊三角形,ADBC邊上的中線(xiàn).求證:BE=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ACBD相交于O,AE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AB=CD,AD=BC,OAC中點(diǎn),過(guò)O點(diǎn)的直線(xiàn)分別與AD、BC相交于點(diǎn)M、N,那么∠1∠2有什么關(guān)系?請(qǐng)說(shuō)明理由;

若過(guò)O點(diǎn)的直線(xiàn)旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1∠2的關(guān)系成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案