【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點D,AM⊥CD于點M,BN⊥CD于N.
(1)求證:∠ADC=∠ABD;
(2)求證:AD2=AMAB;
(3)若AM= ,sin∠ABD= ,求線段BN的長.
【答案】
(1)證明:連接OD,
∵直線CD切⊙O于點D,
∴∠CDO=90°,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠1+∠2=∠2+∠3=90°,
∴∠1=∠3,
∵OB=OD,
∴∠3=∠4,
∴∠ADC=∠ABD;
(2)證明:∵AM⊥CD,
∴∠AMD=∠ADB=90°,
∵∠1=∠4,
∴△ADM∽△ABD,
∴ ,
∴AD2=AMAB;
(3)解:∵sin∠ABD= ,
∴sin∠1= ,
∵AM= ,
∴AD=6,
∴AB=10,
∴BD= =8,
∵BN⊥CD,
∴∠BND=90°,
∴∠DBN+∠BDN=∠1+∠BDN=90°,
∴∠DBN=∠1,
∴sin∠NBD= ,
∴DN= ,
∴BN= = .
【解析】(1)連接OD,由切線的性質和圓周角定理即可得到結果;(2)由已知條件證得△ADM∽△ABD,即可得到結論;(3)根據三角函數和勾股定理代入數值即可得到結果.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線BD經過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數 的圖象上.若點A的坐標為(﹣2,﹣2),則k的值為( )
A.1
B.﹣3
C.4
D.1或﹣3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數 的圖象與一次函數y=kx+b的圖象相交于兩點A(m,3)和B(﹣3,n).
(1)求一次函數的表達式;
(2)觀察圖象,直接寫出使反比例函數值大于一次函數值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“書香八桂,閱讀圓夢”讀書活動中,某中學設置了書法、國學誦讀、演講、征文四個比賽項目(每人只參加一個項目),九(2)班全班同學都參加了比賽,該班班長為了了解本班同學參加各項比賽的情況,收集整理數據后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據圖表中的信息解答下列各題:
(1)請求出九(2)全班人數;
(2)請把折線統(tǒng)計圖補充完整;
(3)南南和寧寧參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】樂樂從如圖所示的二次函數y=ax2+bx+c(a≠0)的圖象中,觀察得出了下列4條信息: ①a+b+c<0;②b+2c>0;③a﹣2b+4c>0;④a= b
你認為其中正確信息的個數有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD 中,AB=2,點E 在邊AD 上,∠ABE=45°,BE=DE,連接BD,點P 在線段DE 上,過點P 作PQ∥BD 交BE 于點Q,連接QD.設PD=x,△PQD 的面積為y,則能表示y 與x 函數關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C 在⊙O 上,過點C 的直線與AB 的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC 是⊙O 的切線;
(2)求證: ;
(3)點M 是弧AB 的中點,CM 交AB 于點N,若AB=8,求MNMC 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某數學活動小組為測量學校旗桿AB的高度,沿旗桿正前方2 米處的點C出發(fā),沿斜面坡度i=1: 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內,AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數據:sin37°≈ ,cos37°≈ ,tan37°≈ .計算結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產技能情況,進行了抽樣調查,過程如下,請補充完整. 收集數據
從甲、乙兩個部門各隨機抽取20名員工,進行了生產技能測試,測試成績(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述數據
按如下分數段整理、描述這兩組樣本數據:
成績x | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績80分及以上為生產技能優(yōu)秀,70﹣﹣79分為生產技能良好,60﹣﹣69分為生產技能合格,60分以下為生產技能不合格)
分析數據
兩組樣本數據的平均數、中位數、眾數如下表所示:
部門 | 平均數 | 中位數 | 眾數 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結論:a.估計乙部門生產技能優(yōu)秀的員工人數為;b.可以推斷出部門員工的生產技能水平較高,理由為 . (至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com