如圖,點(diǎn)E是正方形ABCD邊BC上的一點(diǎn)(不與B、C重合),點(diǎn)F在CD邊的延長(zhǎng)線上,且滿足DF=BE.聯(lián)結(jié)EF,點(diǎn)M、N分別是EF與AC、AD的交點(diǎn).
(1)求∠AFE的度數(shù);
(2)求證:數(shù)學(xué)公式

解:(1)∵四邊形ABCD是正方形,
∴∠B=∠ADC=∠BAD=90°,AB=AD.
在△ABE和△ADF中,

∴ABE≌△ADF(SAS).
∴AE=AF,∠BAE=∠DAF.
∴∠EAF=∠EAD+∠DAF=∠EAD+∠BAE=∠BAD=90°.
∵AE=AF,
∴∠AFE=∠AEF.
∴∠AFE=∠AEF=×90°=45°.

(2)方法1:∵四邊形ABCD是正方形,
∴∠ACD=45°.
∵∠AEF=45°,
∴∠AEF=∠ACF.
又∵∠AME=∠FMC,
∴△ABE∽△ADF,

方法2:∵四邊形ABCD是正方形,
∴∠ACB=∠ACD=45°.
∵△ABE≌△ADF,
∴∠AEB=∠AFD.
∵∠AEB=∠ACB+∠CAE=45°+∠CAE,∠AFD=∠AFE+∠CFM=45°+∠CFM,
∴∠CAE=∠CFM.
又∵∠ACB=∠ACD,△ACE∽△FCM.

分析:(1)由四邊形ABCD是正方形,可得∠B=∠ADC=∠BAD=90°,AB=AD,易證得ABE≌△ADF(SAS),然后由全等三角形的性質(zhì),可求得AE=AF,∠BAE=∠DAF,繼而可求得答案;
(2)由四邊形ABCD是正方形,易證得△ABE∽△ADF,然后由相似三角形的對(duì)應(yīng)邊成比例,證得:
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)E是正方形ABCD邊BA延長(zhǎng)線上一點(diǎn)(AE<AD),連接DE.與正方形ABCD的外接圓相交于點(diǎn)F,BF與AD相交于點(diǎn)G.
(1)求證:BG=DE;
(2)若tan∠E=2,BE=6
2
,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•包頭)如圖,點(diǎn)E是正方形ABCD內(nèi)的一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,則∠BE′C=
135
135
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)E是正方形ABCD邊BC的中點(diǎn),H是BC延長(zhǎng)線上的一點(diǎn),EG⊥AE于點(diǎn)E,交邊CD于G,
(1)求證:△ABE∽△ECG;
(2)延長(zhǎng)EG交∠DCH的平分線于F,則AE與EF的數(shù)量關(guān)系是
AE=EF
AE=EF
;
(3)若E為線段BC上的任意一點(diǎn),則它們之間的關(guān)系是否還能成立?若成立,請(qǐng)給予證明;若不能成立,則舉一個(gè)反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青銅峽市模擬)如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),△CDE是等邊三角形,連接EB、EA.
求證:△ADE≌△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)M是正方形ABCD的邊CD的中點(diǎn),正方形ABCD的邊長(zhǎng)為4cm,點(diǎn)P按A-B-C-M-D的順序在正方形的邊上以每秒1cm的速度作勻速運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(秒),△APM的面積為y(cm2
(1)直接寫出點(diǎn)P運(yùn)動(dòng)2秒時(shí),△AMP面積; 
(2)在點(diǎn)P運(yùn)動(dòng)4秒后至8秒這段時(shí)間內(nèi),y與x的函數(shù)關(guān)系式;
(3)在點(diǎn)P整個(gè)運(yùn)動(dòng)過程中,當(dāng)x為何值時(shí),y=3?

查看答案和解析>>

同步練習(xí)冊(cè)答案