【題目】某一工程,在工程招標時,接到甲,乙兩個工程隊的投標書.施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元.工程領(lǐng)導小組根據(jù)甲,乙兩隊的投標書測算,有如下方案: (i)甲隊單獨完成這項工程剛好如期完成;
(ii)乙隊單獨完成這項工程要比規(guī)定日期多用6天;
(iii)若甲,乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成.
試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.
【答案】解:設(shè)規(guī)定日期為x天.由題意得 + + =1,
.
3(x+6)+x2=x(x+6),
3x=18,
解之得:x=6.
經(jīng)檢驗:x=6是原方程的根.
方案(i):1.2×6=7.2(萬元);
方案(ii)比規(guī)定日期多用6天,顯然不符合要求;
方案(iii):1.2×3+0.5×6=6.6(萬元).
∵7.2>6.6,
∴在不耽誤工期的前提下,選第三種施工方案最節(jié)省工程款
【解析】關(guān)鍵描述語為:“甲,乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成”;說明甲隊實際工作了3天,乙隊工作了x天完成任務(wù),工作量=工作時間×工作效率等量關(guān)系為:甲3天的工作量+乙規(guī)定日期的工作量=1列方程.再看費用情況:方案(1)、(3)不耽誤工期,符合要求,可以求費用,方案(2)顯然不符合要求.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點A恰好落在菱形的對稱中心O處,折痕為EF,若菱形ABCD的邊長為2cm,∠A=120°,則EF=cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1的小正方形組成的方格紙中,若多邊形的各頂點都在方格紙的格點(橫豎格子線的交錯點)上,這樣的多邊形稱為格點多邊形.記格點多邊形內(nèi)的格點數(shù)為a,邊界上的格點數(shù)為b,則格點多邊形的面積可表示為,其中m,n為常數(shù).
(1)在下面的方格中各畫出一個面積為6的格點多邊形,依次為三角形、平行四邊形(非菱形)、菱形;
(2)利用(1)中的格點多邊形確定m,n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題引入:
(1)如圖①,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC= (用α表示);如圖②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,則∠BOC= (用α表示)
拓展研究:
(2)如圖③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請猜想∠BOC= (用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請猜想∠BOC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,菱形花壇ABCD周長是80m,∠ABC=60°,沿著菱形的對角線修建了兩條小路AC和BD,相交于O點.
(1)求兩條小路的長AC、BD.(結(jié)果可用根號表示)
(2)求花壇的面積.(結(jié)果可用根號表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列式子變形是因式分解的是( )
A.x2+5x+6=x(x+5)+6
B.x2﹣5x+6=(x﹣2)(x﹣3)
C.(x﹣2)(x﹣3)=x2﹣5x+6
D.x2﹣5x+6=(x+2)(x+3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市需要鋪設(shè)一條長660米的管道,為了盡量減少施工對城市交通造成的影響,實際施工時,每天鋪設(shè)管道的長度比原計劃增加10%,結(jié)果提前6天完成.求實際每天鋪設(shè)管道的長度與實際施工天數(shù).小宇同學根據(jù)題意列出方程 ﹣ =6.則方程中未知數(shù)x所表示的量是( )
A.實際每天鋪設(shè)管道的長度
B.實際施工的天數(shù)
C.原計劃施工的天數(shù)
D.原計劃每天鋪設(shè)管道的長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠一種產(chǎn)品2013年的產(chǎn)量是100萬件,計劃2015年產(chǎn)量達到121萬件,假設(shè)2013年到2015年這種產(chǎn)品產(chǎn)量的年增長率相同,求2013年到2015年這種產(chǎn)品產(chǎn)量的年增長率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com