如圖,Rt△ABC中,∠C=90°,BC=15,斜邊AB的垂直平分線與∠CAB的平分線都交BC于D點(diǎn),則點(diǎn)D到斜邊AB的距離為_(kāi)_______.

5
分析:根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=BD,根據(jù)等邊對(duì)等角的性質(zhì)可得∠B=∠BAD,再根據(jù)三角形內(nèi)角和定理列式求出∠B=30°,設(shè)AB的垂直平分線與AB相交于點(diǎn)E,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=CD,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半可得BD=2DE,然后根據(jù)BC=CD+BD列式計(jì)算即可得解.
解答:解:∵斜邊AB的垂直平分線與BC相交于D點(diǎn),
∴AD=BD,
∴∠B=∠BAD,
∵AD是∠BAC的角平分線,
∴∠BAD=∠CAD,
∵∠C=90°,
∴∠B+∠BAD+∠CAD=90°,
即3∠B=90°,
∴∠B=30°,
∴BD=2DE,
∵BC=15,
∴CD+BD=DE+BD=DE+2DE=3DE=15,
∴DE=5,
即點(diǎn)D到斜邊AB的距離為5.
故答案為:5.
點(diǎn)評(píng):本題考查了線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),綜合題,但難度不大,熟記各性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案