請閱讀下面知識:
梯形中位線的定義:梯形兩腰中點的連線,叫做梯形的中位線.如圖,E,F(xiàn)是梯形ABCD兩腰AB,CD的中點,則EF是梯形的中位線梯形中位線與兩底長度的關系:梯形中位線長度等于兩底長的和的一半如圖:EF=
1
2
(AD+BC)利用上面的知識,完成下面題目的解答已知:直線l與拋物線M交于點A,B兩點,拋物線M的對稱軸為y軸,過點A,B作x軸的垂線段,垂足分別為D,C,已知A(-1,3),B(
1
2
,
3
2

(1)求梯形ABCD中位線的長度;
(2)求拋物線M的解析式;
(3)把拋物線M向下平移k個單位,得拋物線M1(拋物線M1的頂點保持在x軸的上方),與直線l的交點為A1,B1,同樣作x軸的垂線段,垂足為D1,C1,問此時梯形A1B1C1D1的中位線的長度(設為h)與原來相比是否發(fā)生變化?若不變,說明理由.若有改變,求出h與k的函數(shù)關系式.
分析:(1)根據(jù)A、B兩點的坐標求出AD、BC的長度,再由中位線定理求出梯形ABCD中位線的長度即可;
(2)設拋物線的解析式為y=ax2+b(a≠0),把A、B兩點的坐標代入即可求出ab的值,進而得出拋物線的解析式;
(3)把直線AB的解析式同拋物線的解析式聯(lián)立即可出x1、x2的表達式,再代入直線AB的解析式即可得出A1、B1的坐標,進而可得出A1D1及B1C1的長度,由中位線定理即可求出梯形A1B1C1D1的中位線的長度.
解答:解:(1)∵A(-1,3),B(
1
2
3
2

∴AD=3,BC=
3
2
,
∴梯形ABCD中位線=
1
2
(AD+BC)=
1
2
×(3+
3
2
)=
9
4
;

(2)設拋物線的解析式為y=ax2+b(a≠0),
∵點A(-1,3),B(
1
2
3
2
)在拋物線上,
a+b=3
1
4
a+b=
3
2
,解得
a=2
b=1

∴拋物線的解析式為:y=2x2+1;

(3)∵拋物線M向下平移k個單位得拋物線M1,
∴拋物線M1的解析式為y=2x2+1-k,
y=-x+2
y=2x2+1-k

解得x1=
-1-
8k+9
4
,x2=
-1+
8k+9
4
(其中x1<x2
代入y=-x+2得,y1=-
-1-
8k+9
4
+2,y2=-
-1+
8k+9
4
+2,
∴y1+y2=(-
-1-
8k+9
4
)+(-
-1+
8k+9
4
)=
9
2
,
∴梯形A1B1C1D1的中位線長為
9
4
,保持不變.
點評:本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)及二次函數(shù)的解析式、梯形的中位線定理等相關知識,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2012年廣東省廣州市石碁三中中考數(shù)學模擬試卷(解析版) 題型:解答題

請閱讀下面知識:
梯形中位線的定義:梯形兩腰中點的連線,叫做梯形的中位線.如圖,E,F(xiàn)是梯形ABCD兩腰AB,CD的中點,則EF是梯形的中位線梯形中位線與兩底長度的關系:梯形中位線長度等于兩底長的和的一半如圖:EF=(AD+BC)利用上面的知識,完成下面題目的解答已知:直線l與拋物線M交于點A,B兩點,拋物線M的對稱軸為y軸,過點A,B作x軸的垂線段,垂足分別為D,C,已知A(-1,3),B(
(1)求梯形ABCD中位線的長度;
(2)求拋物線M的解析式;
(3)把拋物線M向下平移k個單位,得拋物線M1(拋物線M1的頂點保持在x軸的上方),與直線l的交點為A1,B1,同樣作x軸的垂線段,垂足為D1,C1,問此時梯形A1B1C1D1的中位線的長度(設為h)與原來相比是否發(fā)生變化?若不變,說明理由.若有改變,求出h與k的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案