【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABO中,∠ABO=90°,OB邊在x軸上,將△ABO繞點B順時針旋轉(zhuǎn)60°得到△CBD.若點A的坐標(biāo)為(﹣2,2 ),則點C的坐標(biāo)為( )
A.( ,1)
B.(1, )
C.(1,2)
D.(2,1)
【答案】B
【解析】解:作CH⊥x軸于H,如圖,
∵點A的坐標(biāo)為(﹣2,2 ),AB⊥x軸于點B,∴tan∠BAC= = ,
∴∠A=30°,
∵△ABO繞點B逆時針旋轉(zhuǎn)60°得到△CBD,
∴BC=BA=2 ,OB=2,∠CBH=30°,
在Rt△CBH中,CH= BC= ,
BH= CH=3,
OH=BH﹣OB=3﹣2=1,
∴C(1, ).
故選:B.
作CH⊥x軸于H,如圖,再利用旋轉(zhuǎn)的性質(zhì)得BC=BA=2 ,∠ABC=60°,則∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三邊的關(guān)系可計算出CH= BC= ,BH= CH=3,所以O(shè)H=BH﹣OB=3﹣2=1,于是可寫出C點坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點P(2x+6,x﹣4)在平面直角坐標(biāo)系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把彎曲的河道改成直的,可以縮短航程,其理由是( 。
A. 經(jīng)過兩點有且只有一條直線
B. 兩點之間,線段最短
C. 兩點之間,直線最短
D. 線段可以比較大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把點P(﹣5,3)向右平移8個單位得到點P1 , 再將點P1繞原點旋轉(zhuǎn)90°得到點P2 , 則點P2的坐標(biāo)是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( 。
A. 兩條對角線相等的四邊形是平行四邊形
B. 兩條對角線相等且互相垂直的四邊形是矩形
C. 兩條對角線互相垂直平分的四邊形是菱形
D. 兩條對角線互相垂直平分且相等的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是 ,并補(bǔ)全頻數(shù)分布直方圖;
(2)C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;
(3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com