【題目】如圖1,在Rt△ABC中,∠ACB=90°,∠B=60°,D為AB的中點,∠EDF=90°,DE交AC于點G,DF經過點C.
(1)求∠ADE的度數;
(2)如圖2,將圖1中的∠EDF繞點D順時針方向旋轉角α(0°<α<60°),旋轉過程中的任意兩個位置分別記為∠E1DF1 , ∠E2DF2 , DE1交直線AC于點P,DF1交直線BC于點Q,DE2交直線AC于點M,DF2交直線BC于點N,求 的值;
(3)若圖1中∠B=β(60°<β<90°),(2)中的其余條件不變,判斷 的值是否為定值?如果是,請直接寫出這個值(用含β的式子表示);如果不是,請說明理由.
【答案】
(1)
解:∵∠ACB=90°,D為AB的中點,
∴CD=DB,
∴∠DCB=∠B,
∵∠B=60°,
∴∠DCB=∠B=∠CDB=60°,
∴∠CDA=120°,
∵∠EDC=90°,
∴∠ADE=30°
(2)
解:∵∠C=90°,∠MDN=90°,
∴∠DMC+∠CND=180°,
∵∠DMC+∠PMD=180°,
∴∠CND=∠PMD,
同理∠CPD=∠DQN,
∴△PMD∽△QND,
過點D分別做DG⊥AC于G,DH⊥BC于H,
可知DG,DH分別為△PMD和△QND的高
∴ = ,
∵DG⊥AC于G,DH⊥BC于H,
∴DG∥BC,
又∵D為AC中點,
∴G為AC中點,
∵∠C=90°,
∴四邊形CGDH 為矩形有CG=DH=AG,
Rt△AGD中,
即
(3)
解:是定值,定值為tan(90°﹣β),
∵ ,四邊形CGDH 為矩形有CG=DH=AG,
∴Rt△AGD中, =tan∠A=tan(90°﹣∠B)=tan(90°﹣β),
∴ =tan(90°﹣β)
【解析】(1)根據含30°的直角三角形的性質和等邊三角形的性質解答即可;(2)根據相似三角形的判定和性質以及直角三角形中的三角函數解答即可;(3)由(2)的推理得出 ,再利用直角三角形的三角函數解答.
科目:初中數學 來源: 題型:
【題目】函數y=x2+bx+c與y=x的圖像如圖所示,有以下結論:
①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當1<x<3時,x2+(b﹣1)x+c<0.
其中正確的個數為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究與應用.試完成下列問題:
(1)如圖①,已知等腰Rt△ABC中,∠C=90°,點O為AB的中點,作∠POQ=90°,分別交AC、BC于點P、Q,連結PQ、CO,求證:AP2+BQ2=PQ2;
(2)如圖②,將等腰Rt△ABC改為任意直角三角形,點O仍為AB的中點,∠POQ=90°,試探索上述結論AP2+BQ2=PQ2是否仍成立;
(3)通過上述探究(可直接運用上述結論),試解決下面的問題:如圖③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,點O為AB的中點,過C、O兩點的圓分別交AC、BC于P、Q,連結PQ,求△PCQ面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從A、B兩地于上午9點鐘同時出發(fā),相向而行,已知甲的速度比乙快2千米/時,到上午11時兩車還相距36千米,又過了2小時后,兩車又相距36千米.
(1)求甲乙兩地間的距離與兩車的速度;
(2)若甲乙兩車分別從A、B兩地同時相向而行,到B、A兩地后立即返回,求兩車第一次相遇和第二次相遇所走的時間是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8;④0<CE≤6.4.其中正確的結論是 . (把你認為正確結論的序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連接MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)試直接寫出點D的坐標;
(2)已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連接OP.
①若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標;
②試問在拋物線的對稱軸上是否存在一點T,使得|TO﹣TB|的值最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一不透明的袋子中裝有4個球,它們除了上面分別標有的號碼1、2、3、4不同外,其余均相同.將小球攪勻,并從袋中任意取出一球后放回;再將小球攪勻,并從袋中再任意取出一球.若把兩次號碼之和作為一個兩位數的十位上的數字,兩次號碼之差的絕對值作為這個兩位數的個位上的數字,請用“畫樹狀圖”或“列表”的方法求所組成的兩位數是奇數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2017年深圳市男生體育中考考試項目為二項,在200米和1000米兩個項目中選一個項目;另外在運球上籃、實心球、跳繩、引體向上四個項目中選一個.
(1)每位男考生一共有種不同的選擇方案;
(2)若必勝,必成第一個項目都恰好選了200米,然后在第二組四個項目中各任意選取另外一個用畫樹狀圖或列表的方法求必勝和必成選擇同種方案的概率. (友情提醒:各種方案可用A、B、C、…或①、②、③、…等符號來代表可簡化解答過程)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com