【題目】如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.
(1)直接寫出AE與BC的位置關(guān)系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.

【答案】
(1)解:如圖1,

∵AB是⊙O的直徑,

∴∠AEB=90°.

∴AE⊥BC


(2)解:如圖1,

∵BF與⊙O相切,

∴∠ABF=90°.

∴∠CBF=90°﹣∠ABE=∠BAE.

∵∠BAF=2∠CBF.

∴∠BAF=2∠BAE.

∴∠BAE=∠CAE.

∴∠CBF=∠CAE.

∵CG⊥BF,AE⊥BC,

∴∠CGB=∠AEC=90°.

∵∠CBF=∠CAE,∠CGB=∠AEC,

∴△BCG∽△ACE


(3)解:連接BD,如圖2所示.

∵∠DAE=∠DBE,∠DAE=∠CBF,

∴∠DBE=∠CBF.

∵AB是⊙O的直徑,

∴∠ADB=90°.

∴BD⊥AF.

∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,

∴CD=CG.

∵∠F=60°,GF=1,∠CGF=90°,

∴tan∠F= =CG=tan60°=

∵CG=

∴CD=

∵∠AFB=60°,∠ABF=90°,

∴∠BAF=30°.

∵∠ADB=90°,∠BAF=30°,

∴AB=2BD.

∵∠BAE=∠CAE,∠AEB=∠AEC,

∴∠ABE=∠ACE.

∴AB=AC.

設(shè)⊙O的半徑為r,則AC=AB=2r,BD=r.

∵∠ADB=90°,

∴AD= r.

∴DC=AC﹣AD=2r﹣ r=(2﹣ )r=

∴r=2 +3.

∴⊙O的半徑長為2 +3.


【解析】(1)由AB為⊙O的直徑即可得到AE與BC垂直.(2)易證∠CBF=∠BAE,再結(jié)合條件∠BAF=2∠CBF就可證到∠CBF=∠CAE,易證∠CGB=∠AEC,從而證到△BCG∽△ACE.(3)由∠F=60°,GF=1可求出CG= ;連接BD,容易證到∠DBC=∠CBF,根據(jù)角平分線的性質(zhì)可得DC=CG= ;設(shè)圓O的半徑為r,易證AC=AB,∠BAD=30°,從而得到AC=2r,AD= r,由DC=AC﹣AD= 可求出⊙O的半徑長.
【考點精析】利用角平分線的性質(zhì)定理和等腰三角形的判定對題目進行判斷即可得到答案,需要熟知定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為( )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點Aa0)和B0,b)滿足,分別過點A、Bx軸、y軸的垂線交于點C,如圖,點P從原點出發(fā),以每秒2個單位長度的速度沿著O-B-C-A-O的路線移動.

1)寫出AB、C三點的坐標(biāo);

2)當(dāng)點P移動了6秒時,描出此時P點的位置,并寫出點P的位置坐標(biāo);

3)連結(jié)(2)中BP兩點,將線段BP向下平移h個單位(h0),得到BP′,若BP′將四邊形OACB的周長分成相等的兩部分,求h的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,在平面直角坐標(biāo)系中,A(3,4),B(0,2).

(1)OAB繞O點旋轉(zhuǎn)180°得到OA1B1,請畫出OA1B1,并寫出A1,B1的坐標(biāo);

(2)判斷以A,B,A1,B1為頂點的四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L:y=-x+2x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

(1)求A、B兩點的坐標(biāo);

(2)△COM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

(3)當(dāng)t為何值時△COM≌△AOB,并求此時M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:如圖①,平面內(nèi)兩條直線、相交于點O,對于平面內(nèi)的任意一點M,若p、q分別是點M到直線的距離(P≥0,q≥0),稱有序非負實數(shù)對是點M的距離坐標(biāo)。

根據(jù)上述定義,請解答下列問題:

如圖②,平面直角坐標(biāo)系xoy內(nèi),直線的關(guān)系式為,直線的關(guān)系式為,M是平面直角坐標(biāo)系內(nèi)的點。

(1)若,求距離坐標(biāo)為時,點M的坐標(biāo);

(2)若,且,利用圖②,在第一象限內(nèi),求距離坐標(biāo)為時,點M的坐標(biāo);

(3)若,則坐標(biāo)平面內(nèi)距離坐標(biāo)為時,點M可以有幾個位置?并用三角尺在圖③畫出符合條件的點M(簡要說明畫法)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.
(1)直接寫出AE與BC的位置關(guān)系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運回,已知該公司租車從基地到公司的運輸費為5000元.

(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點GBC邊上任意一點,DE⊥AG于點E,BF∥DE且交AG于點F.

(1)求證:DE=AF;

(2)若AB=4,BG=3,求AF的長;

(3)如圖2,連接DF、CE,判斷線段DFCE的位置關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊答案