已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點B(2,0)和點C(0,8),且它的對稱軸是直線x=-2.
(1)求拋物線與x軸的另一交點A的坐標;
(2)求此拋物線的解析式;
(3)連接AC,BC,若點E是線段AB上的一個動點(與點A,點B)不重合,過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關系式;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

【答案】分析:(1)知道對稱軸了和x軸上另一點,就能求出該點.
(2)知道兩點坐標和對稱軸就能求出拋物線的解析式.
(3)依題意,AE=m,則BE=8-m,由題意可知△BEF∽△BAC,求出EF,過點F作FG⊥AB,垂是為G,則sin∠FEG=sin∠CAB,進而求出FG,由S=S△BCE-S△BFE,進而求得S與m之間的函數(shù)關系式.
(4)由S與m之間的函數(shù)關系式,求得S的最大值,算出點E坐標,判斷三角形的形狀.
解答:解:(1)∵拋物線y=ax2+bx+c的對稱軸是直線x=-2,
∴由對稱性可得A點的坐標為(-6,0);

(2)∵點C(0,8)在拋物線y=ax2+bx+c的圖象上
∴c=8.
將A(-6,0),B(2,0)代入表達式得
,
解得
故所求解析式為y=-x2-x+8.

(3)依題意,AE=m,則BE=8-m,
∵OA=6,OC=8,
∴AC=10,
∵EF∥AC,
∴△BEF∽△BAC,
,即EF=,
過點F作FG⊥AB,垂是為G,則sin∠FEG=sin∠CAB=
=,
∴FG=×=8-m,
∴S=S△BCE-S△BFE
=(8-m)×8-(8-m)(8-m),
=-m2+4m,

(4)存在.理由如下:
∵S=-m2+4m=-(m-4)2+8且-<0,
∴當m=4時,S有最大值,S最大值=8,
∵m=4,
∴點E的坐標為(-2,0),
∴△BCE為等腰三角形.
點評:本題是二次函數(shù)的綜合題,涉及到求拋物線的表達式和求最值等知識點,題不是很難,但要注意細節(jié).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習冊答案