【題目】如圖,△ABC中,AB=AC=18,BC=12,正方形DEFG的頂點(diǎn)E,F(xiàn)在△ABC內(nèi),頂點(diǎn)D,G分別在AB,AC上,AD=AG,DG=6,則點(diǎn)F到BC的距離為( )
A.1
B.2
C.12 ﹣6
D.6 ﹣6
【答案】D
【解析】解:過點(diǎn)A作AM⊥BC于點(diǎn)M,交DG于點(diǎn)N,延長GF交BC于點(diǎn)H, ∵AB=AC,AD=AG,
∴AD:AB=AG:AC,
∵∠BAC=∠DAG,
∴△ADG∽△ABC,
∴∠ADG=∠B,
∴DG∥BC,
∵四邊形DEFG是正方形,
∴FG⊥DG,
∴FH⊥BC,AN⊥DG,
∵AB=AC=18,BC=12,
∴BM= BC=6,
∴AM= =12 ,
∴ ,
∴ ,
∴AN=6 ,
∴MN=AM﹣AN=6 ,
∴FH=MN﹣GF=6 ﹣6.
故選:D.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和勾股定理的概念的相關(guān)知識點(diǎn),需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y= 的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y= 的圖象上,且OA⊥OB,cosA= ,則k的值為( )
A.﹣3
B.﹣4
C.﹣
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線AB交y軸于A點(diǎn),交X軸于B點(diǎn),A(0,6),B(6,0).點(diǎn)D是線段BO上一點(diǎn),BN⊥AD交AD的延長線于點(diǎn)N.
(1)如圖,若OM∥BN交AD于點(diǎn)M.點(diǎn)O作0G⊥BN,交BN的延長線于點(diǎn)G,求證:AM=BG
(2)如圖,若∠ADO=67.5°,OM∥BN交AD于點(diǎn)M,交AB于點(diǎn)Q,求的值.
(3)如圖,若OC∥AB交BN的延長線于點(diǎn)C.請證明:∠CDN+2∠BDN=180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t滿足什么條件時,△BCP為直角三角形?
(3)另有一點(diǎn)Q,從點(diǎn)C開始,按C→B→A→C的路徑運(yùn)動,且速度為每秒2cm,若P、Q兩點(diǎn)同時出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.當(dāng)t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
在圖中畫出與關(guān)于直線l成軸對稱的;
三角形ABC的面積為______;
以AC為邊作與全等的三角形,則可作出______個三角形與全等;
在直線l上找一點(diǎn)P,使的長最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有x個黑球和y個白球,這些球除顏色外無其他差別.若從盒中隨機(jī)取一個球,它是黑球的概率是 ;若往盒中再放進(jìn)1個黑球,這時取得黑球的概率變?yōu)? .
(1)填空:x= , y=;
(2)小王和小林利用x個黑球和y個白球進(jìn)行摸球游戲.約定:從盒中隨機(jī)摸取一個,接著從剩下的球中再隨機(jī)摸取一個,若兩球顏色相同則小王勝,若顏色不同則小林勝.求兩個人獲勝的概率各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在直角坐標(biāo)系中描出各點(diǎn),畫出△ABC.
(2)求△ABC的面積;
(3)設(shè)點(diǎn)P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(1,6)和點(diǎn)M(m,n)都在反比例函數(shù)y= (x>0)的圖象上,
(1)k的值為;
(2)當(dāng)m=3,求直線AM的解析式;
(3)當(dāng)m>1時,過點(diǎn)M作MP⊥x軸,垂足為P,過點(diǎn)A作AB⊥y軸,垂足為B,試判斷直線BP與直線AM的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com