【題目】某學校為了提高學生學科能力,決定開設以下校本課程:A.文學院,B.小小數(shù)學家,C.小小外交家,D.未來科學家,為了解學生最喜歡哪一項校本課程,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

1)這次被調(diào)查的學生共有   人;

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的小小外交家的課堂學習中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加全國英語口語大賽,求恰好同時選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).

【答案】(1)200 (2)答案見解析 (3)

【解析】

1)由A36°,A的人數(shù)為20人,即可求得這次被調(diào)查的學生總?cè)藬?shù);

2)由(1),可求得C的人數(shù),即可將條形統(tǒng)計圖(2)補充完整;

3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好同時選中甲、乙兩位同學的情況,然后利用概率公式求解即可求得答案.

1)∵A36°

A36°÷36010%,

A的人數(shù)為20人,

∴這次被調(diào)查的學生共有:20÷10%200(人),

故答案為:200

2)如圖,C有:20020804060(人),

3)畫樹狀圖得:

∵共有12種等可能的結(jié)果,恰好同時選中甲、乙兩位同學的有2種情況,

∴恰好同時選中甲、乙兩位同學的概率為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將正方形ABCD繞點A按逆時針方向旋轉(zhuǎn)30°,得正方形AB1C1D1B1C1CD于點E,AB,則四邊形AB1ED的內(nèi)切圓半徑為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA3,OC4,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標系,D是邊CB上的一個動點(不與C、B重合),反比例函數(shù)yk0)的圖象經(jīng)過點D且與邊BA交于點E,作直線DE

1)當點D運動到BC中點時,求k的值;

2)求的值;

3)連接DA,當DAE的面積為時,求k值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有5張正面分別寫有數(shù)字﹣1,-,0,1,3的卡片,它們除數(shù)字不同外全部相同.將它們背面朝上,洗勻后從中隨機的抽取一張,記卡片上的數(shù)字為a,則使以x為自變量的反比例函數(shù)經(jīng)過二、四象限,且關于x的方程有實數(shù)解的概率是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上學習了圓周角的概念和性質(zhì):頂點在圓上,兩邊與圓相交,同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進行了探究.

下面是他的探究過程,請補充完整:

定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個圓外角.

(1)請在圖2中畫出所對的一個圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;

問題解決

經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3,FH是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A(14),B(4n)兩點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當x0時,kx+b的解集.

(3)Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩組相同的撲克牌,每組兩張,兩張牌的牌面數(shù)字分別是23,從每組牌中各隨機摸出一張牌,稱為一次試驗.

1)小紅與小明用一次試驗做游戲,如果摸到的牌面數(shù)字相同小紅獲勝,否則小明獲勝,請用列表法或畫樹狀圖的方法說明這個游戲是否公平?

2)小麗認為:在一次試驗中,兩張牌的牌面數(shù)字和可能為4、5、6三種情況,所以出現(xiàn)和為4’的概率是,她的這種看法是否正確?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為中,弦,所對的圓心角分別是,若,則弦的長等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線是第一、三象限的角平分線.

1)由圖觀察易知A0,2)關于直線l的對稱點A′的坐標為(20),請在圖中分別標明B53)、C-25)關于直線l的對稱點B′、C′的位置,并寫出他們的坐標:___________、___________

2)結(jié)合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點關于第一、三象限的角平分線的對稱點的坐標為___________(不必證明);

(3)已知兩點,試在直線L上畫出點Q,使點QD、E兩點的距離之和最小,求QD+QE的最小值.

查看答案和解析>>

同步練習冊答案