【題目】在平面直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,點(diǎn)B與點(diǎn)C都在x軸上,且點(diǎn)B在點(diǎn)C的左側(cè),滿足BC=OA,若-3am-1b2與anb2n-2是同類項且OA=m,OB=n.
(1)m= ;n= .
(2)點(diǎn)C的坐標(biāo)是 .
(3)若坐標(biāo)平面內(nèi)存在一點(diǎn)D,滿足△BCD全等△ABO,試求點(diǎn)D的坐標(biāo).
【答案】(1)3,2;(2)(5,0)或(1,0);(3)(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).
【解析】
試題(1)根據(jù)同類項的概念即可求得;
(2)根據(jù)已知條件即可求得B(2,0)或(-2,0),根據(jù)點(diǎn)B在點(diǎn)C的左側(cè),BC=OA,即可確定C的坐標(biāo);
(3)根據(jù)三角形全等的性質(zhì)即可確定D的坐標(biāo);
試題解析:(1)∵-3am-1b2與anb2n-2是同類項,
∴,
解得.
(2)∵OA=m,OB=n,
∴B(2,0)或(-2,0),
∵點(diǎn)B在點(diǎn)C的左側(cè),BC=OA,
∴C(5,0)或(1,0);
(3)當(dāng)C(5,0)時,∵△BCD全等△ABO,BC=OA=3,
∴CD=2或BD=2,
∴D的坐標(biāo)為(5,2)或(5,-2)或(2,2)或(2,-2);
當(dāng)C(1,0)時,∵△BCD全等△ABO,BC=OA=3,
∴CD=2或BD=2,
∴D的坐標(biāo)為(1,2)或(1,-2)或(-2,2)或(-2,-2).
所以D點(diǎn)的坐標(biāo)為(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張同學(xué)嘗試運(yùn)用課堂上學(xué)到的方法,自主研究函數(shù)y=的圖象與性質(zhì).下面是小張同學(xué)在研究過程中遇到的幾個問題,現(xiàn)由你來完成:
(1)函數(shù)y=自變量的取值范圍是 ;
(2)下表列出了y與x的幾組對應(yīng)值:
x | … | ﹣2 | ﹣ | m | ﹣ | ﹣ | 1 | 2 | … | |||
y | … | 1 | 4 | 4 | 1 | … |
表中m的值是 ;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出以表中各組對應(yīng)值為坐標(biāo)的點(diǎn),試由描出的點(diǎn)畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)y=的圖象,寫出這個函數(shù)的性質(zhì): .(只需寫一個)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知:如圖,AB為⊙O的直徑,AC、BC為弦,點(diǎn)P為上一點(diǎn),AB=10,AC:BC=3:4.
(1)當(dāng)點(diǎn)P與點(diǎn)C關(guān)于直線AB對稱時(如圖1),求PC的長;
(2)當(dāng)點(diǎn)P為的中點(diǎn)時(如圖2),求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市某校藝術(shù)節(jié)期間,開展了“好聲音”歌唱比賽,在初賽中,學(xué)生處對初賽成績做了統(tǒng)計分析,繪制成如下頻數(shù)、頻率分布表和頻數(shù)分布直方圖(如圖),請你根據(jù)圖中提供的信息,解答下列問題:
分組 | 頻數(shù) | 頻率 |
74.5≤x<79.5 | 2 | 0.04 |
79.5≤x<84.5 | a | 0.16 |
84.5≤x<89.5 | 20 | 0.40 |
89.5≤x<94.5 | 16 | 0.32 |
94.5≤x<100.5 | 4 | b |
合計 | 50 | 1 |
(1)頻數(shù)、頻率分布表中a= ,b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)初賽成績在94.5≤x<100.5分的四位同學(xué)恰好是七年級、八年級各一位,九年級兩位,學(xué)生處打算從中隨機(jī)挑選兩位同學(xué)談一下決賽前的訓(xùn)練,則所選兩位同學(xué)恰好都是九年級學(xué)生的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,將∠ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)一定角度后,BC的對應(yīng)邊B'C'交CD邊于點(diǎn)G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則
=__(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011內(nèi)蒙古赤峰,7,3分)早晨,小張去公園晨練,下圖是他離家的距離y(千
米)與時間t(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法正確的是 ( )
A.小張去時所用的時間多于回家所用的時間B.小張在公園鍛煉了20分鐘
C.小張去時的速度大于回家的速度 D.小張去時走上坡路,回家時走下坡路
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com