暑假期間,兩位家長計劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報價均為每人1000元的兩家旅行社。經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩位家長全額收費,學(xué)生都按7折收費;乙旅行社的優(yōu)惠條件是:學(xué)生、家長都按8折收費。假設(shè)這兩位家長帶領(lǐng)名學(xué)生去旅行,甲、乙旅行社的收費分別為,
(1)、寫出的函數(shù)關(guān)系式。
(2)、學(xué)生人數(shù)在什么情況下,選擇甲旅行社更省錢?

(1)、=700x+2000,="800x+1600;" (2)多于4人.

解析試題分析:(1)根據(jù)甲旅行社的收費=兩名家長的全額費用+學(xué)生的七折費用,可得到y(tǒng)1與x的函數(shù)關(guān)系式;再根據(jù)乙旅行社的收費=兩名家長的八折費用+學(xué)生的八折費用,可得到y(tǒng)2與x的函數(shù)關(guān)系式;
(2)根據(jù)題意知:y<y時,可以確定學(xué)生人數(shù),選擇甲旅行社更省錢.
試題解析:(1)、=700x+2000
=800x+1600
(2)、當(dāng)時,
即:700x+2000<800x+1600
∴x>4
答:當(dāng)學(xué)生人數(shù)超過4人時,選擇甲旅行社更省錢。
考點: 一次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊長為4的正方形ABCD中,動點E以每秒1個單位長度的速度從點A開始沿邊AB向點B運動,動點F以每秒2個單位長度的速度從點B開始沿折線BC﹣CD向點D運動,動點E比動點F先出發(fā)1秒,其中一個動點到達終點時,另一個動點也隨之停止運動,設(shè)點F的運動時間為t秒.

(1)點F在邊BC上.
①如圖1,連接DE,AF,若DE⊥AF,求t的值;
②如圖2,連結(jié)EF,DF,當(dāng)t為何值時,△EBF與△DCF相似?
(2)如圖3,若點G是邊AD的中點,BG,EF相交于點O,試探究:是否存在在某一時刻t,使得?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,A1B1和A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線段).甲是一名游泳運動健將,乙是一名游泳愛好者,甲在賽道A1B1上從A1處出發(fā),到達B1后,以同樣的速度返回A1處,然后重復(fù)上述過程;乙在賽道A2B2上以2m/s的速度從B2處出發(fā),到達A2后以相同的速度回到B2處,然后重復(fù)上述過程(不考慮每次折返時的減速和轉(zhuǎn)向時間).若甲、乙兩人同時出發(fā),設(shè)離開池邊B1B2的距離為y(m),運動時間為t(s),甲游動時,y(m)與t(s)的函數(shù)圖象如圖2所示.
(1)賽道的長度是   m,甲的速度是   m/s;
(2)分別寫出甲在時,y關(guān)于t的函數(shù)關(guān)系式:
當(dāng),y=    ;當(dāng)時,y=   
(3)在圖2中畫出乙在2分鐘內(nèi)的函數(shù)大致圖象(用虛線畫);
(4)請你根據(jù)(3)中所畫的圖象直接判斷,若從甲、乙兩人同時開始出發(fā)到2分鐘為止,甲、乙共相遇了幾次?2分鐘時,乙距池邊B1B2的距離為多少米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在每個小正方形的邊長均為1個單位長度的方格紙中,有線段AB和直線MN,點A、B、M、N均在小正方形的頂點上.
(1)在方格紙中畫四邊形ABCD(四邊形的各頂點均在小正方形的頂點上),使四邊形ABCD是以直線MN為對稱軸的軸對稱圖形,點A的對稱點為點D,點B的對稱點為點C;
(2)若直線MN上存在點P,使得PA+PB的值最小,請直接寫出PA的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,點A(,0),點B(0,2),點C是線段OA的中點.
(1)點P是直線AB上的一個動點,當(dāng)PC+PO的值最小時,
①畫出符合要求的點P(保留作圖痕跡);
②求出點P的坐標及PC+PO的最小值;
(2)當(dāng)經(jīng)過點O、C的拋物線y=ax2+bx+c與直線AB只有一個公共點時,求a的值并指出這個公共點所在象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

書生中學(xué)小賣部工作人員到路橋批發(fā)部選購甲、乙兩種品牌的文具盒,乙品牌的進貨單價是甲品牌進貨單價的2倍,考慮各種因素,預(yù)計購進乙品牌文具盒的數(shù)量(個)與甲品牌文具盒數(shù)量(個)之間的函數(shù)關(guān)系如圖所示,當(dāng)購進的甲、乙品牌的文具盒中,甲有120個時,購進甲、乙品牌文具盒共需7 200元.
(1)根據(jù)圖象,求之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進貨價;
(3)若小賣部每銷售1個甲種品牌的文具盒可獲利4元,每銷售1個乙種品牌的文具盒可獲利9元,根據(jù)學(xué)校后勤部決定,準備用不超過6 300元購進甲、乙兩種品牌的文具盒,且這兩種文具盒全部售出后獲利不低于1 795元,問小賣部工作人員有幾種進貨方案?哪種進貨方案能使獲利最大?最大獲利為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時).圖中折線、線段分別表示甲、乙兩車所行路程(千米)與時間(小時)之間的函數(shù)關(guān)系對應(yīng)的圖象(線段表示甲出發(fā)不足2小時因故停車檢修).請根據(jù)圖象所提供的信息,解決如下問題:

(1)求乙車所行路程與時間的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知反比例函數(shù)y1 (k1>0)與一次函數(shù)y2=k2x+1(k2≠0)相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.

(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)請直接寫出B點的坐標,并指出當(dāng)x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系中,函數(shù)的圖象是第一、三象限的角平分線.

(1)實驗與探究:由圖觀察易知A(0,2)關(guān)于直線的對稱點的坐標為(2,0),請在圖中分別標明B(5,3) 、C(-2,5) 關(guān)于直線的對稱點、的位置,并寫出它們的坐標:             、          
(2)歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點的坐標,
你會發(fā)現(xiàn):坐標平面內(nèi)任一點P(m,n)關(guān)于第一、三象限的角平分線的對稱點的坐標為           .

查看答案和解析>>

同步練習(xí)冊答案