【題目】1)閱讀理解:利用旋轉(zhuǎn)變換解決數(shù)學(xué)問(wèn)題是一種常用的方法。如圖,點(diǎn)是等邊三角形內(nèi)一點(diǎn),,求的度數(shù)。為利用已知條件,不妨把繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°得,連接,則的長(zhǎng)為_______;在中,易證,且的度數(shù)為_____,綜上可得的度數(shù)為__ ;

2)類比遷移:如圖,點(diǎn)是等腰內(nèi)的一點(diǎn),。求的度數(shù);

3)拓展應(yīng)用:如圖,在四邊形中,,請(qǐng)直接寫出的長(zhǎng)。

【答案】12, 30°, 90° ;(290°;(32

【解析】

1)由旋轉(zhuǎn)性質(zhì)、等邊三角形的判定可知CP′P是等邊三角形,由等邊三角形的性質(zhì)知∠CP′P=60°,根據(jù)勾股定理逆定理可得AP′P是直角三角形,繼而可得答案.
2)如圖2,把BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°AP'C,連接PP′,同理可得CP′P是等腰直角三角形和AP′P是直角三角形,所以∠APC=90°;
3)如圖3,將ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到ACG,連接DG.則BD=CG,根據(jù)勾股定理求CG的長(zhǎng),就可以得BD的長(zhǎng).

解:(1)把BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°AP'C,連接PP′(如圖1).
由旋轉(zhuǎn)的性質(zhì)知CP′P是等邊三角形;
P′A=PB=、∠CP′P=60°、P′P=PC=2
AP′P中,∵AP2+P′A2=12+2=4=PP′2;
∴△AP′P是直角三角形;
∴∠P′AP=90°
PA=PC,
∴∠AP′P=30°;
∴∠BPC=CP′A=CP′P+AP′P=60°+30°=90°
故答案為:2;30°;90°;
2)如圖2,把BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°AP'C,連接PP′


由旋轉(zhuǎn)的性質(zhì)知CP′P是等腰直角三角形;
P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,
AP′P中,∵AP'2+P′P2=2+2=2=AP2;
∴△AP′P是直角三角形;
∴∠AP′P=90°
∴∠APP'=45°
∴∠APC=APP'+CPP'=45°+45°=90°
3)如圖3,

AB=AC
ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到ACG,連接DG.則BD=CG,
∵∠BAD=CAG,
∴∠BAC=DAG,
AB=ACAD=AG,
∴∠ABC=ACB=ADG=AGD
∴△ABC∽△ADG,
AD=2AB,
DG=2BC=10,
過(guò)AAEBCE,
∵∠BAE+ABC=90°,∠BAE=ADC
∴∠ADG+ADC=90°,
∴∠GDC=90°
CG===2,
BD=CG=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,點(diǎn)從點(diǎn)出發(fā),沿折線以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng)。當(dāng)點(diǎn)不與點(diǎn)、重合時(shí),在邊上取一點(diǎn),滿足,過(guò)點(diǎn),交邊于點(diǎn),以為邊做矩形.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.

1)用含的代數(shù)式表示線段的長(zhǎng);

2)當(dāng)矩形為正方形時(shí),求的值;

3)設(shè)矩形重疊部分圖形的周長(zhǎng)為,求之間的函數(shù)關(guān)系式;

4)作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).當(dāng)、這兩點(diǎn)中只有一個(gè)點(diǎn)在矩形內(nèi)部時(shí),直接寫出此時(shí)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等式.

若等式中,已知是非零常量,請(qǐng)寫出因變量與自變量的函數(shù)解析式;當(dāng)時(shí),求的最大值和最小值及對(duì)應(yīng)的的取值.

若等式中,是非零常量,請(qǐng)寫出因變量與自變量的函數(shù)解析式,并判斷在什么范圍內(nèi)取值時(shí),的增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD放置在平面直角坐標(biāo)系xOy中,已知A-2,0),B20),D0,3),反比例函數(shù)yx0)的圖象經(jīng)過(guò)點(diǎn)C

1)求此反比例函數(shù)的解析式;

2)問(wèn)將平行四邊形ABCD向上平移多少個(gè)單位,能使點(diǎn)B落在雙曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】書香校園活動(dòng)中,某校為了解學(xué)生家庭藏書情況,隨機(jī)抽取本校部分學(xué)生進(jìn)行調(diào)查,并繪制成部分統(tǒng)計(jì)圖表如下:

類別

家庭藏書m

學(xué)生人數(shù)

A

0≤m≤25

20

B

26≤m≤100

a

C

101≤m≤200

50

D

m≥201

66

根據(jù)以上信息,解答下列問(wèn)題:

(1)該調(diào)查的樣本容量為_____a_____;

(2)在扇形統(tǒng)計(jì)圖中,“A”對(duì)應(yīng)扇形的圓心角為_____°;

(3)若該校有2000名學(xué)生,請(qǐng)估計(jì)全校學(xué)生中家庭藏書200本以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠?/span>

1x23x0

2x2+4x50

33x2+214x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸的一個(gè)交點(diǎn)坐標(biāo)是(3,0),對(duì)稱軸為直線x1,下列結(jié)論:①abc0;②2a+b0;③4a2b+c0;④當(dāng)y0時(shí),﹣1x3;⑤bc.其中正確的個(gè)數(shù)是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,我省中考體育分值增加到55分,其中女生必考項(xiàng)目為八百米跑,我校現(xiàn)抽取九年級(jí)部分女生進(jìn)行八百米測(cè)試成績(jī)?nèi)缦拢?/span>

成績(jī)

3′40″及以下

3′414′

4′01″4′20′

4′21″4′40″

4′41″及以上

等級(jí)

A

B

C

D

E

百分比

10%

25%

m

20%

n

1)求樣本容量及表格中的mn的值

2)求扇形統(tǒng)計(jì)圖中A等級(jí)所對(duì)的圓心角度數(shù),并補(bǔ)全統(tǒng)計(jì)圖.

3)我校9年級(jí)共有女生500人.若女生八百米成績(jī)的達(dá)標(biāo)成績(jī)?yōu)?/span>4分,我校九年級(jí)女生八百米成績(jī)達(dá)標(biāo)的人數(shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測(cè)量城門大樓的高度,在點(diǎn)B處測(cè)得樓頂A的仰角為22°,他正對(duì)著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺(tái)D處,并測(cè)得此時(shí)樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在AB之間拉上繩子,并在繩子上掛一些彩旗,請(qǐng)你求出AB之間所掛彩旗的長(zhǎng)度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

查看答案和解析>>

同步練習(xí)冊(cè)答案