【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點(diǎn)E,AB=9,cos∠BAC=,tan∠DBC=

求:(1)邊CD的長(zhǎng);

(2)△BCE的面積.

【答案】(1)CD=5;(2)

【解析】試題分析:(1先在RtABC中,由余弦定理求得AC的值,進(jìn)而理由勾股定理計(jì)算出BC,再在RtBCD中由正切定理解得CD的長(zhǎng);(2)通過做AB的平行線EH構(gòu)造出相似三角形,由相似三角形對(duì)應(yīng)邊成比例可求得線段EH的長(zhǎng),最后理由三角形面積公式即可求解.

試題解析:(1)在RtABC中,

,

BC=

RtBCD中, ,

CD=5

2)過點(diǎn)EEHBC,垂足為H

∵∠ABC=BCD=90°,∴∠ABC+BCD=180°CD//AB

∵∠EHC=ABC=90°,EH//AB,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=ax-b的圖象經(jīng)過一、二、三象限,且與x軸交于點(diǎn)(-2,0),則不等式ax>b的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( )
A.7a+a=7a2
B.a2a3=a6
C.a3÷a=a2
D.(ab)2=ab2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB是銳角,點(diǎn)D在射線BC上運(yùn)動(dòng),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AE,連接EC.

(1)操作發(fā)現(xiàn):若AB=AC,∠BAC=90°,當(dāng)D在線段BC上時(shí)(不與點(diǎn)B重合),如圖①所示,請(qǐng)你直接寫出線段CE和BD的位置關(guān)系和數(shù)量關(guān)系是_____,_____

(2)猜想論證:

在(1)的條件下,當(dāng)D在線段BC的延長(zhǎng)線上時(shí),如圖②所示,請(qǐng)你判斷(1)中結(jié)論是否成立,并證明你的判斷.

(3)拓展延伸:

如圖③,若AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng),試探究:當(dāng)銳角∠ACB等于_____度時(shí),線段CE和BD之間的位置關(guān)系仍成立(點(diǎn)C、E重合除外)?此時(shí)若作DF⊥AD交線段CE于點(diǎn)F,且當(dāng)AC=3時(shí),請(qǐng)直接寫出線段CF的長(zhǎng)的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,分別交OA、OB于F、E兩點(diǎn),再分別以E、F為圓心,大于 EF長(zhǎng)為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線OP,過點(diǎn)F作FD∥OB交OP于點(diǎn)D.

(1)若∠OFD=116°,求∠DOB的度數(shù);
(2)若FM⊥OD,垂足為M,求證:△FMO≌△FMD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校新到一批理、化、生實(shí)驗(yàn)器材需要整理,若實(shí)驗(yàn)管理員李老師一人單獨(dú)整理需要40分鐘完成,現(xiàn)在李老師與工人王師傅共同整理20分鐘后,李老師因事外出,王師傅再單獨(dú)整理了20分鐘才完成任務(wù).
(1)王師傅單獨(dú)整理這批實(shí)驗(yàn)器材需要多少分鐘?
(2)學(xué)校要求王師傅的工作時(shí)間不能超過30分鐘,要完成整理這批器材,李老師至少要工作多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示(4×102)×(15×105)的計(jì)算結(jié)果是( 。
A.60×107
B.6.0×106
C.6.0×108
D.6.0×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2+mx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的值可以是(
A.0
B.﹣1
C.2
D.﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.

(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;

(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案