【題目】如圖,在△ABC中,AD是高,AE,BF是角平分線,它們相交于點O,∠BAC62°,∠C70°,求∠EAD,∠BOE的度數(shù)分別是多少?

【答案】EAD=11°,∠BOE=55°.

【解析】

ADBC,可得∠ADC=90°,根據(jù)三角形內(nèi)角和定理可得∠CAD=180°-90°-70°=20°,由于∠BAC=62°AE是∠BAC的角平分線,可求出∠EAC=BAE=31°,繼而求出∠EAD=EAC-CAD=31°-20°=11°,根據(jù)三角形內(nèi)角和定理可得:ABC=180°-BAC-C=48°,由于BF是∠ABC的角平分線,可得∠ABO=24°,因此∠BOE=ABO+BAE=24°+31°=55°

解∵ADBC

∴∠ADC=90°,

∵∠C=70°

∴∠CAD=180°-90°-70°=20°,

∵∠BAC=62°,AE是∠BAC的角平分線,

∴∠EAC=BAE=31°,

∴∠EAD=EAC-CAD=31°-20°=11°,

ABC=180°-BAC-C=48°

BF是∠ABC的角平分線,

∴∠ABO=24°

∴∠BOE=ABO+BAE=24°+31°=55°

故∠EAD,∠BOE的度數(shù)分別是11°,55°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊的邊長為5,點邊上,點延長線一點,連結(jié),點關(guān)于直線的對稱點恰好落在邊上,當時,的長為(

A.1.5B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AMMB=ANND=12,則tan∠MCN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1:y1=x和直線l2:y2=﹣2x+6相交于點A,直線l2與x軸交于點B,動點P沿路線O→A→B運動.

(1)求點A的坐標,并回答當x取何值時y1y2?

(2)求AOB的面積;

(3)當POB的面積是AOB的面積的一半時,求出這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點BC分別在線段NM,NA上,在ABC中,∠A∶∠ABC∶∠BCA3510,且ABC≌△MNC,則∠BCM∶∠NBA等于( )

A.12B.13C.14D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設(shè)點P的運動時間為t秒,當t的值為_____秒時,ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AECD,AD、BE相交于點P,BQADQPQ3,PE1AD的長是(  )

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市今年中考理化實驗操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個物理實驗(用紙簽AB、C表示)和三個化學(xué)實驗(用紙簽DE、F表示)中各抽取一個進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.

(1) 用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;

(2) 小剛抽到物理實驗B和化學(xué)實驗F(記作事件P)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90 AB=16cm,BC=12cmP、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.

查看答案和解析>>

同步練習冊答案