【題目】如圖,在△ABD中,AC⊥BD于點C, ,點E是AB的中點,tanD=2,CE=1,求sin∠ECB的值和AD的長.
【答案】sin∠ECB= , AD=.
【解析】試題分析:由直角三角形斜邊上的中線等于斜邊的一半,得到AB=2,設BC=3x,則CD=2x,AC=4x,在Rt△ACB中由勾股定理AB=5x,由∠ECB=∠B,求出sin∠ECB及x的值,在Rt△ACD中,由勾股定理求得AD的長.
試題解析:∵AC⊥BD,∴∠ACB=∠ACD=90°,∵點E是AB的中點,CE=1,∴BE=CE=1,AB=2CE=2,∴∠B=∠ECB,
∵ ,∴設BC=3x,CD=2x,
在Rt△ACD中,tanD=2,∴ ,∴AC=4x,
在Rt△ACB中,由勾股定理得AB= =5x,∴sin∠ECB=sinB= = ,由AB=2,得x= ,
∴AD= ==2 =2×=.
科目:初中數學 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數據:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數y=的圖象與雙曲線y=(k≠0,x>0)相交于點A(3,m)和點B.
(1)求雙曲線的解析式及點B的坐標;
(2)若點P在y軸上,連接PA,PB,求當PA+PB的值最小時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校教師開展了“練一手好字”的活動,校委會對部分教師練習字帖的情況進行了問卷調查,問卷設置了“柳體”、“顏體”、”歐體“和”其他“類型,每位教師僅能選一項,根據調查的結果繪制了如下統計表:
類別 | 柳體 | 顏體 | 歐體 | 其他 | 合計 |
人數 | 4 | 10 | 6 | ||
占的百分比 | 0.5 | 0.25 | 1 |
根據圖表提供的信息解答下列問題:
(1)這次問卷調查了多少名教師?
(2)請你補全表格.
(3)在調查問卷中,甲、乙、丙、丁四位教師選擇了“柳體”,現從以上四位教師中任意選出2名教師參加學校的柳體興趣小組,請你用畫樹狀圖或列表的方法,求選出的2人恰好是乙和丙兩位教師的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,2).
(1)畫出△ABC關于點B成中心對稱的圖形△A1BC1;
(2)以原點O為位似中心,相似比為1∶2,在y軸的左側,畫出△ABC放大后的圖形△A2B2C2,并直接寫出點C2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知線段AB=(為常數),點C為直線AB上一點,點P、Q分別在線段BC、AC上,且滿足CQ=2AQ,CP=2BP.
(1)如圖,當點C恰好在線段AB中點時,則PQ=_______(用含的代數式表示);
(2)若點C為直線AB上任一點,則PQ長度是否為常數?若是,請求出這個常數;若不是,請說明理由;
(3)若點C在點A左側,同時點P在線段AB上(不與端點重合),請判斷2AP+CQ-2PQ與1的大小關系,并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l1:與坐標軸交于A,B兩點,直線l2:(≠0)與坐標軸交于點C,D.
(1)求點A,B的坐標;
(2)如圖,當=2時,直線l1,l2與相交于點E,求兩條直線與軸圍成的△BDE的面積;
(3)若直線l1,l2與軸不能圍成三角形,點P(a,b)在直線l2:(k≠0)上,且點P在第一象限.
①求的值;
②若,,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統計圖中的信息回答下列問題:
(1)本次抽樣調查共抽取了多少名學生?
(2)求測試結果為C等級的學生數,并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=10,AB=14,點E為DC上一個動點,若將△ADE沿AE折疊,當點D的對應點D′落在∠ABC的角平分線上時,則點D′到AB的距離為( 。
A. 6 B. 6或8 C. 7或8 D. 6或7
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com