【題目】小明爸爸叫木匠師傅做了一扇高為2 m,寬為1.5 m的門ABCD,但師傅安裝好門之后,他總覺得門安裝得不夠標(biāo)準(zhǔn).根據(jù)經(jīng)驗(yàn)一扇門安裝的是否標(biāo)準(zhǔn),主要取決于∠ACB,若∠ACB是直角就標(biāo)準(zhǔn),但手上只有一把夠長的卷尺.請你用所學(xué)知識去幫助小明爸爸驗(yàn)證這扇門是否安裝的標(biāo)準(zhǔn).

根據(jù)所學(xué)知識可知,還需量出線段 的長度.

若⑴中量出的線段長度為2.5 m,請你利用所學(xué)知識幫

小明爸爸判斷門安裝的是否標(biāo)準(zhǔn)?

【答案】(1)AB

(2)門安裝是標(biāo)準(zhǔn)的

【解析】

試題(1)根據(jù)勾股定理量出AB的長,根據(jù)勾股定理的逆定理即可判定∠ACB是否是直角;(2)分別計(jì)算AC2+BC2AB2的長,看是否相等,即可得結(jié)論.

試題解析:

(1)AB.

(2)∵AC=2、BC=1.5、AB=2.5

AC2+BC2=22+1.52=6.25

AB2=2.52=6.25

AC2+BC2=AB2

∴∠ACB=900

門安裝是標(biāo)準(zhǔn)的

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若代數(shù)式(4x2mx3y4)(8nx2x2y3)的值與字母x的取值無關(guān),求代數(shù)式(m22mnn2)2(mn3m2)3(2n2mn)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,對角線ACBD相交于點(diǎn)O,過點(diǎn)O作直線EFBD,且交AC于點(diǎn)E,交BC于點(diǎn)F,連接BE、DF,且BE平分∠ABD.

1)①求證:四邊形BFDE是菱形;②求∠EBF的度數(shù).
2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,GI分別在BF,BE邊上,且BG=BI,連接GDHGD的中點(diǎn),連接FH,并延長FHED于點(diǎn)J,連接IJIH,IF,IG.試探究線段IHFH之間滿足的數(shù)量關(guān)系,并說明理由;
3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點(diǎn)E是對角線AC上一點(diǎn),連接DE,作EFDE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后

的紀(jì)錄如下:回答下列問題:

1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重 千克;

2)若這批白菜以2千克的價格出售,則這批白菜一共可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】城市發(fā)展 交通先行,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設(shè)工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x28時,V=80;當(dāng)28<x188時,V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.

(1)求當(dāng)28<x188時,V關(guān)于x的函數(shù)表達(dá)式;

(2)若車流速度V不低于50千米/時,求當(dāng)車流密度x為多少時,車流量P(單位:輛/時)達(dá)到最大,并求出這一最大值.

(注:車流量是單位時間內(nèi)通過觀測點(diǎn)的車輛數(shù),計(jì)算公式為:車流量=車流速度×車流密度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結(jié)AC,過上一點(diǎn)E作EGAC交CD的延長線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線;

(3)延長AB交GE的延長線于點(diǎn)M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮從家步行到公交車站臺,等公交車去學(xué)校. 圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數(shù)關(guān)系. 下列說法錯誤的是

A. 他離家8km共用了30min B. 他等公交車時間為6min

C. 他步行的速度是100m/min D. 公交車的速度是350m/min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣2x+ca0)與x軸、y軸分別交于點(diǎn)A,B,C三點(diǎn),已知點(diǎn)A﹣2,0),點(diǎn)C0,﹣8),點(diǎn)D是拋物線的頂點(diǎn).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)如圖1,拋物線的對稱軸與x軸交于點(diǎn)E,第四象限的拋物線上有一點(diǎn)P,將△EBP沿直線EP折疊,使點(diǎn)B的對應(yīng)點(diǎn)B'落在拋物線的對稱軸上,求點(diǎn)P的坐標(biāo);

3)如圖2,設(shè)BC交拋物線的對稱軸于點(diǎn)F,作直線CD,點(diǎn)M是直線CD上的動點(diǎn),點(diǎn)N是平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)B,FM,N為頂點(diǎn)的四邊形是菱形時,請直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB分別在x,y軸上,點(diǎn)D在第一象限內(nèi),DCx軸于點(diǎn)C,AO=CD=2AB=DA=,反比例函數(shù)y=k0)的圖象過CD的中點(diǎn)E

(1)求k的值;

(2)BFG和△DCA關(guān)于某點(diǎn)成中心對稱,其中點(diǎn)Fy軸上,試判斷點(diǎn)G是否在反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案