【題目】如圖,拋物線y=-x2+2x+m+1(m為常數(shù))交y軸于點(diǎn)A,與x軸的一個交點(diǎn)在2和3之間,頂點(diǎn)為B.
①拋物線y=-x2+2x+m+1與直線y=m+2有且只有一個交點(diǎn);
②若點(diǎn)M(-2,y1)、點(diǎn)N(,y2)、點(diǎn)P(2,y3)在該函數(shù)圖象上,則y1<y2<y3;
③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為y=-(x+1)2+m;
④點(diǎn)A關(guān)于直線x=1的對稱點(diǎn)為C,點(diǎn)D、E分別在x軸和y軸上,當(dāng)m=1時,四邊形BCDE周長的最小值為.
其中正確判斷有( )
A.①②③④B.②③④C.①③④D.①③
【答案】C
【解析】
將二次函數(shù)配方成即可判斷①③;將P根據(jù)對稱性轉(zhuǎn)化到對稱軸左邊即可判斷②;將m=1代入函數(shù)解析式即可求算A,C坐標(biāo),作對稱根據(jù)兩點(diǎn)之間線段最短即可求算四邊形BCDE周長的最小值.
解:將y=-x2+2x+m+1化為頂點(diǎn)式為:
∴頂點(diǎn)坐標(biāo)為,函數(shù)圖形與直線y=m+2相切,只有一個公共點(diǎn),①正確;
根據(jù)“上加下減,左加右減”將向左平移2個單位,再向下平移2個單位得到: ,③正確;
二次函數(shù)的對稱軸是直線,故P(2,y3)可對稱到,在對稱軸左側(cè),y隨x的增大而增大,故,②錯誤;
當(dāng)m=1時,函數(shù)解析式為:,故,,
作B關(guān)于y軸對稱點(diǎn)N,作C關(guān)于x軸對稱點(diǎn)M,則 連接MN,則MN為BE,DE,CD和的最小值,四邊形BCDE周長最小值為MN與BC的和,則有:
∴當(dāng)m=1時,四邊形BCDE周長的最小值為,④正確;
故答案選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系內(nèi),A,B為x軸上兩點(diǎn),以AB為直徑的⊙M交y軸于C,D兩點(diǎn),C為的中點(diǎn),弦AE交y軸于點(diǎn)F,且點(diǎn)A的坐標(biāo)為(2,0),CD=8
(1)求⊙M的半徑;
(2)動點(diǎn)P在⊙M的圓周上運(yùn)動.
①如圖1,當(dāng)FP的長度最大時,點(diǎn)P記為P,在圖1中畫出點(diǎn)P0,并求出點(diǎn)P0橫坐標(biāo)a的值;
②如圖1,當(dāng)EP平分∠AEB時,求EP的長度;
③如圖2,過點(diǎn)D作⊙M的切線交x軸于點(diǎn)Q,當(dāng)點(diǎn)P與點(diǎn)A,B不重合時,請證明為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,⊙O經(jīng)過點(diǎn)A、C、D,與BC相交于點(diǎn)E,連接AC、AE.若∠D=70°,則∠EAC的度數(shù)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,兩條高AD,BE交于點(diǎn)P.過點(diǎn)E作,垂足為G,交AD于點(diǎn)F,過點(diǎn)F作,交BC于點(diǎn)H,交BE交于點(diǎn)Q,連接DE.
(1)若,,求DE的長
(2)若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)在格點(diǎn)上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實(shí)線表示,按步驟完成下列問題:
(1)將邊繞點(diǎn)順時針旋轉(zhuǎn)90°得到線段;
(2)畫邊的中點(diǎn);
(3)連接并延長交于點(diǎn),直接寫出的值;
(4)在上畫點(diǎn),連接,使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=16cm,AC=12cm,動點(diǎn)P、Q分別以每秒2cm和1cm的速度同時開始運(yùn)動,其中點(diǎn)P從點(diǎn)A出發(fā),沿AC邊一直移到點(diǎn)C為止,點(diǎn)Q從點(diǎn)B出發(fā)沿BA邊一直移到點(diǎn)A為止,(點(diǎn)P到達(dá)點(diǎn)C后,點(diǎn)Q繼續(xù)運(yùn)動)
(1)請直接用含t的代數(shù)式表示AP的長和AQ的長,并寫出定義域.
(2)當(dāng)t等于何值時,△APQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情過后,為了促進(jìn)消費(fèi),某商場設(shè)計(jì)了一種促銷活動:在一個不透明的箱子里放有四個相同的小球,球上分別標(biāo)有“10元”、“20元”、“30元”和“40元”的字樣,規(guī)定:在本商場同一日內(nèi),顧客每消費(fèi)滿500元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回)。商場根據(jù)兩小球所標(biāo)金額的和返還相等價格的購物券,購物券可以在本商場消費(fèi).某顧客剛好消費(fèi)500元.
(1)該順客最多可得到______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于60元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于點(diǎn)D,BE平分∠ABC,且BE⊥AC于點(diǎn)E,與CD交于F,H是BC邊的中點(diǎn),連接DH與BE交于點(diǎn)G,則下列結(jié)論:
①BF=AC;②∠A=∠DGE;③CE<BG;④S△ADC=S四邊形CEGH;⑤DGAE=DCEF中,正確結(jié)論的個數(shù)是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點(diǎn)A(3,n).
(1)求實(shí)數(shù)a的值;
(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,若點(diǎn)C在y軸上,且S△ABC=2S△AOB,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com