精英家教網 > 初中數學 > 題目詳情
如圖,已知:⊙O1與⊙O2外切于點O,以直線O1O2為x軸,點O為坐標原點,建立直角坐標系,直線AB切⊙O1于點B,切⊙O2于點A,交y軸于點C(0,2),交x軸于點M.BO的延長線交⊙O2于點D,且OB:OD=1:3.
(1)求⊙O2半徑的長;
(2)求線段AB的解析式;
(3)在直線AB上是否存在點P,使△MO2P與△MOB相似?若存在,求出點P的坐標與此時k=的值,若不存在,說明理由.

【答案】分析:(1)連接BO1,DO2,O2A作O1N⊥O2A于N,連接OA,根據切線長定理求出AB的長,設O1B為r,根據勾股定理得到方程(4r)2-(2r)2=42,求出方程的解即可;
(2)求出∠CMO=∠NO1O2=30°,求出OM,設AB的解析式是y=kx+b,把C、M的坐標代入得到方程組,求出方程組的解即可;
(3)①∠MO2P=30°,過B作BQ⊥OM于Q,求出MQ,BQ,過P'作P'W⊥X軸于W,根據相似三角形的性質求出PW即可得到P的坐標,根據相似三角形的性質求出k即可;②∠MO2P=120°,過P作PZ⊥X軸于Z,根據含30度角的直角三角形性質求出PZ,即可得到P的坐標,根據相似三角形的性質求出k即可.
解答:解:(1)連接BO1,O2A作O1N⊥O2A于N,連接OA,
∵直線AB切⊙O1于點B,切⊙O2于點A,交y軸于點C(0,2),
∴CA=CB,CA=CO(切線長定理),
∴CA=CB=CO,
∴AB=2OC=4,
設O1B為r,由O1O22-O2N2=O1N2得(4r)2-(2r)2=42,
解得,3r=2,
答:⊙O2的半徑的長為

(2)∵O2N=3r-r=2r,O1O2=r+3r=4r,
∴∠NO1O2=30°,
∴∠CMO=∠NO1O2=30°,
∵OM==2
M(-2,0),
設線段AB的解析式是y=kx+b,
把C、M的坐標代入得:
解得:k=,b=2,
∴線段AB的解析式為y=x+2(-≤x≤);

(3)△MOB是頂角為120°的等腰三角形,其底邊的長為2,
假設滿足條件的點P存在,
①∠MO2P=30°,
過B作BQ⊥OM于Q,
∵OB=MB,
∴MQ=OQ=
∵∠BMO=30°,
∴BQ=1,BM=2,
過P'作P'W⊥X軸于W,
∴P'W∥BQ,
==
∴P'W=2,
即P'與C重合,
P'(0,2),
∴k==4;
②∠MO2P=120°,
過P作PZ⊥X軸于Z,
PO2=O2M=4,∠PO2Z=60°,
∴O2Z=2,
由勾股定理得:PZ=6,
∴P(4,6),
∴k==12,
答在直線AB上存在點P,使△MO2P與△MOB相似,點P的坐標是(0,2)或(4,6),k的值是4或12.
點評:本題主要考查對相似三角形的性質和判定,等腰三角形的性質,含30度角的直角三角形,勾股定理,銳角三角函數的定義,解一元一次方程等知識點的連接和掌握,綜合運用這些性質進行計算是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知圓O1與圓O2相交于A,B兩點,直線O1A交圓O1于C,交圓O2于D,連接CB精英家教網并延長交圓O2于E,AF切圓O1于A,交CE于F.
(1)求證:
CA
CD
=
AF
DE
;
(2)若
CA
AD
=
3
2
,圓O1的半徑為2,且∠C=30°,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

11、如圖,已知:⊙O1與⊙O2是等圓,它們相交于A、B兩點,O2在⊙O1上,AC是⊙O2的直徑,直線CB交⊙O1于D,E為AB延長線上一點,連接DE.
(1)請你連接AD,證明:AD是⊙O1的直徑;
(2)若∠E=60°,求證:DE是⊙O1的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知:⊙O1與⊙O2外切于點O,以直線O1O2為x軸,點O為坐標原點,建立直角坐標系,直線AB精英家教網切⊙O1于點B,切⊙O2于點A,交y軸于點C(0,2),交x軸于點M.BO的延長線交⊙O2于點D,且OB:OD=1:3.
(1)求⊙O2半徑的長;
(2)求線段AB的解析式;
(3)在直線AB上是否存在點P,使△MO2P與△MOB相似?若存在,求出點P的坐標與此時k=
S△MO2P
S
 
△MOB
的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知:⊙O1與⊙O2外切于點O,以直線O1O2為x軸,點O為坐標原點,建立直角坐標系,直線AB切⊙O1于點B,切⊙O2于點A,交y軸于點C(0,2),交x軸于點M.BO的延長線交⊙O2于點D,且OB:OD=1:3.
(1)求⊙O2半徑的長;
(2)求線段AB的解析式;
(3)在直線AB上是否存在點P,使△MO2P與△MOB相似?若存在,求出點P的坐標與此時k=數學公式的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案