=·,則x的取值范圍是_________.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

  =-2004x,則x的取值范圍應(yīng)是________.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:三點(diǎn)一測(cè)叢書(shū) 九年級(jí)數(shù)學(xué) 上。ńK版課標(biāo)本) 江蘇版課標(biāo)本 題型:044

矩形倉(cāng)庫(kù)的多種設(shè)計(jì)方案

  實(shí)踐與探索課上,老師布置了這樣一道題:

  有100米長(zhǎng)的籬笆材料,想圍成一矩形露天倉(cāng)庫(kù),要求面積不小于600平方米,在場(chǎng)地的北面有一堵長(zhǎng)50米的舊墻.有人用這個(gè)籬笆圍一個(gè)長(zhǎng)40米,寬10米的矩形倉(cāng)庫(kù),但面積只有400平方米,不合要求.現(xiàn)在請(qǐng)你設(shè)計(jì)矩形倉(cāng)庫(kù)的長(zhǎng)和寬,使它符合要求.

  經(jīng)過(guò)同學(xué)們一天的實(shí)踐與思考,老師收到了如下幾種設(shè)計(jì)方案:

  (1)如果設(shè)矩形的寬為x米,則用于長(zhǎng)的籬笆為=(50-x)米,這時(shí)面積S=x(50-x).

  當(dāng)S=600時(shí),由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  檢驗(yàn)后知x=20符合要求.

  (2)根據(jù)在周長(zhǎng)相等的條件下,正方形面積大于矩形面積,所以設(shè)計(jì)成正方形倉(cāng)庫(kù),它的邊長(zhǎng)為x米,則4x=100,x=25.這時(shí)面積達(dá)到625米,當(dāng)然符合要求.

  (3)如果利用場(chǎng)地北面的那堵舊墻,取矩形的長(zhǎng)與舊墻平行,設(shè)與墻垂直的矩形一邊長(zhǎng)為x米,則另一邊為100-2x,如圖.

  因?yàn)榕f墻長(zhǎng)50米,所以100-2x≤50.即x≥25米.若S=600平方米,則由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根據(jù)x≥25,舍去x2=25-

  所以,利用舊墻,取矩形垂直于舊墻一邊長(zhǎng)為25+米(約43米),另一邊長(zhǎng)約14米,符合要求.

  (4)如果充分利用北面舊墻,即矩形一邊是50米舊墻時(shí),用100米籬笆圍成矩形倉(cāng)庫(kù),則矩形另一邊長(zhǎng)為25米,這時(shí)矩形面積為S=50×25=1250(平方米).即面積可達(dá)1250平方米,符合設(shè)計(jì)要求.

還可以有其他一些符合要求的設(shè)計(jì)方案.請(qǐng)你試試看.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué) 三點(diǎn)一測(cè)叢書(shū) 八年級(jí)數(shù)學(xué) 下。ńK版課標(biāo)本) 江蘇版 題型:013

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點(diǎn)M(a,b),過(guò)M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因?yàn)閎=,故ab=k,所以S=|k|(如圖(1)).

  這就是說(shuō),過(guò)雙曲線(xiàn)上任意一點(diǎn)作x軸、y軸的垂線(xiàn),所得的矩形面積為|k|.這就是k的幾何意義,會(huì)給解題帶來(lái)方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點(diǎn)P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大。

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點(diǎn)A、B、C,經(jīng)過(guò)三點(diǎn)分別向x軸引垂線(xiàn),交x軸于A1、B1、C1三點(diǎn),連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=,

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個(gè)反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點(diǎn),AM⊥x軸,垂足為M,O是原點(diǎn),如果△AOM的面積是3,那么這個(gè)反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線(xiàn)在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請(qǐng)你解答下題:

  如圖(5),過(guò)反比例函數(shù)y=(x>0)的圖像上任意兩點(diǎn)A、B分別作軸和垂線(xiàn),垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì)。請(qǐng)你根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問(wèn)題:

1)填充頻率分布表中的空格;

2)補(bǔ)全頻率分布直方圖;

3)在該問(wèn)題中的樣本容量是多少?

答:__________________________。

4)全體參賽學(xué)生中,競(jìng)賽成績(jī)落在哪組范圍內(nèi)的人數(shù)最多?(不要求說(shuō)明理由)

答:__________________________。

5)若成績(jī)?cè)?/span>90分以上(不含90分)為優(yōu)秀,則該校成績(jī)優(yōu)秀的約為多少人?

答:__________________________。

頻率分布表

分組                      頻數(shù)                     頻率

50.560.5                 4                        0.08

60.570.5                 8                        0.16

70.580.5                 10                        0.20

80.590.5                 16                        0.32

90.5100.5                     &nbs1p;                  

合計(jì)                                             

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將矩形紙片分別沿兩條不同的直線(xiàn)剪兩刀,使剪得的三塊紙片恰能拼成一個(gè)三角形(不能有重疊和縫隙).圖1中提供了一種剪拼成等腰三角形的示意圖.

         

圖1                   圖2    

     

(1)    請(qǐng)?zhí)峁┝硪环N剪拼成等腰三角形的方式,并在圖2中畫(huà)出示意圖;

     

圖3                 備用圖 

(2)以點(diǎn)為原點(diǎn),所在直線(xiàn)為軸建立平面直角坐標(biāo)系(如圖),點(diǎn)的坐標(biāo)為.若剪拼后得到等腰三角形,使點(diǎn)、軸上(上方),點(diǎn)在邊上(不與、重合).設(shè)直線(xiàn)的解析式為),則的值為        ,的取值范圍是         .(不要求寫(xiě)解題過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案