在直角三角形中不能求解的是(▲)

A、已知一直角邊和一銳角    B、已知斜邊和一銳角

C、已知兩邊                D、已知兩角

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構造直角三角形,精英家教網(wǎng)過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( 。
A、數(shù)形結合的思想;B、轉化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•浦口區(qū)一模)在直角三角形中,如果已知2個元素(其中至少有一個是邊),那么就可以求出其余的3個未知元素.對于任意三角形,我們需要知道幾個元素就可以求出其余的未知元素呢?思考并解答下列問題:
(1)觀察下列4幅圖,根據(jù)圖中已知元素,可以求出其余未知元素的三角形是
②、③
②、③


(2)如圖,在△ABC中,已知∠B=40°,BC=12,AB=10,能否求出AC?如果能,請求出AC的長度(答案保留根號);如果不能,還需要增加哪個條件?(參考數(shù)據(jù):sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直線AB:y=-2x+4分別交x軸、y軸于A,B兩點.點C(-3,0)在x軸上,點Q是x軸正半軸上一動點,過點Q作直線PQ⊥x軸,交直線AB于點P,連接PC,PO.
(1)設△COP的面積為S,求S與x的函數(shù)關系式;
(2)點Q在運動過程中,△CQP能否構成等腰直角三角形?若能求出點P坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年江蘇省江陰市顧山九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

如圖,在平面直角坐標系中,矩形OABC的兩邊OAOC分別在x軸、y軸的正半軸上,OA=4,OC=2.點P從點O出發(fā),沿x軸以每秒1個單位長的速度向點A勻速運動,當點P到達點A時停止運動,設點P運動的時間是t秒.將線段CP的中點繞點P按順時針方向旋轉90°得點D,D隨點P的運動而運動,連接DP、DA

1)請用含t的代數(shù)式表示出點D的坐標;

2)求t為何值時,DPA的面積最大,最大為多少?

3)在點POA運動的過程中,DPA能否成為直角三角形?若能,t的值.

若不能,請說明理由;

4)請直接寫出隨著點P的運動,D運動路線的長

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省南京市聯(lián)合體(秦淮下關浦口沿江)中考數(shù)學一模試卷(解析版) 題型:解答題

在直角三角形中,如果已知2個元素(其中至少有一個是邊),那么就可以求出其余的3個未知元素.對于任意三角形,我們需要知道幾個元素就可以求出其余的未知元素呢?思考并解答下列問題:
(1)觀察下列4幅圖,根據(jù)圖中已知元素,可以求出其余未知元素的三角形是______.

(2)如圖,在△ABC中,已知∠B=40°,BC=12,AB=10,能否求出AC?如果能,請求出AC的長度(答案保留根號);如果不能,還需要增加哪個條件?(參考數(shù)據(jù):sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)

查看答案和解析>>

同步練習冊答案