(2012•岳陽(yáng))如圖,兩個(gè)邊長(zhǎng)相等的正方形ABCD和EFGH,正方形EFGH的頂點(diǎn)E固定在正方形ABCD的對(duì)稱中心位置,正方形EFGH繞點(diǎn)E順時(shí)針?lè)较蛐D(zhuǎn),設(shè)它們重疊部分的面積為S,旋轉(zhuǎn)的角度為θ,S與θ的函數(shù)關(guān)系的大致圖象是( 。
分析:過(guò)點(diǎn)E作EM⊥BC于點(diǎn)M,EN⊥AB于點(diǎn)N,則可證明△ENK≌△EML,從而得出重疊部分的面積不變,繼而可得出函數(shù)關(guān)系圖象.
解答:解:如右圖,過(guò)點(diǎn)E作EM⊥BC于點(diǎn)M,EN⊥AB于點(diǎn)N,
∵點(diǎn)E是正方形的對(duì)稱中心,
∴EN=EM,
由旋轉(zhuǎn)的性質(zhì)可得∠NEK=∠MEL,
在Rt△ENK和Rt△EML中,
∠NEK=∠EML
EN=EM
∠ENK=∠EML
,
故可得△ENK≌△EML,即陰影部分的面積始終等于正方形面積的
1
4

故選B.
點(diǎn)評(píng):此題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,證明△ENK≌△EML,得出陰影部分的面積始終等于正方形面積的
1
4
是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岳陽(yáng))如圖,在Rt△ABC中,∠B=90°,沿AD折疊,使點(diǎn)B落在斜邊AC上,若AB=3,BC=4,則BD=
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岳陽(yáng))如圖,是由6個(gè)棱長(zhǎng)為1個(gè)單位的正方體擺放而成的,將正方體A向右平移2個(gè)單位,向后平移1個(gè)單位后,所得幾何體的視圖( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岳陽(yáng))如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對(duì)于下列結(jié)論:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=
1
2
CD•OA;⑤∠DOC=90°,其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岳陽(yáng))如圖,△ABC中,AB=AC,D是AB上的一點(diǎn),且AD=
23
AB,DF∥BC,E為BD的中點(diǎn).若EF⊥AC,BC=6,則四邊形DBCF的面積為
15
15

查看答案和解析>>

同步練習(xí)冊(cè)答案