【題目】在平面直角坐標系中,點A,BC的坐標分別為(a,0),(2,﹣4),(c0),且ac滿足方程為二元一次方程.

1)求A,C的坐標.

2)若點Dy軸正半軸上的一個動點.

①如圖1,∠AOD+ADO+DAO180°,當ADBC時,∠ADO與∠ACB的平分線交于點P,求∠P的度數(shù);

②如圖2,連接BD,交x軸于點E.若SADE≤SBCE成立.設動點D的坐標為(0,d),求d的取值范圍.

【答案】1A(﹣2,0),C50);(2)①45°;②0d≤5

【解析】

1)根據(jù)二元一次方程的定義列式計算;

2)①作PHAD,根據(jù)角平分線的定義、平行線的性質(zhì)計算,得到答案;②連接AB,交y軸于F,根據(jù)點的坐標特征分別求出SABC、SABD,根據(jù)題意列出不等式,解不等式即可.

解:(1)由題意得,2a4≠0,c41,a231,

解得,a=﹣2,c5,

則點A的坐標為(﹣2,0),點C的坐標為(5,0);

2)①作PHAD,

ADBC

PHBC,

∵∠AOD90°

∴∠ADO+OAD90°,

ADBC

∴∠BCA=∠OAD,

∴∠ADO+BCA90°,

∵∠ADO與∠BCA的平分線交于P點,

∴∠ADPADO,∠BCPBCA,

∴∠ADP+BCP45°,

PHAD,PHBC,

∴∠HPD=∠ADP,∠HPC=∠BCP,

∴∠DPC=∠HPD+HPC=∠ADP+BCP45°

②連接AB,交y軸于F

SADE≤SBCE,

SADE+SABE≤SBCE+SABE,即SABD≤SABC

A(﹣2,0),B2,﹣4),C5,0),

SABC×2+5×414,點F的坐標為(0,﹣2),

SABD×2+d×2+×2+d×24+2d,

由題意得,4+2d≤14,

解得,d≤5,

∵點Dy軸正半軸上的一個動點,

0d≤5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點軸上, ,將線段繞點順時針旋轉(zhuǎn),使點與點重合.

1)求點的坐標;

2)求經(jīng)過、、三點的拋物線的解析式;

3)在此拋物線的對稱軸上,是否存在點,使得以點、、為頂點的三角形是等腰三角形?若存在,求出點的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)在學習概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請你設計一個對小明和小剛都公平的方案.

甲同學的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.

1)甲同學的方案公平嗎?請用列表或畫樹狀圖的方法說明;

2)乙同學將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商廈分別用600元購進甲、乙兩種糖果,因為甲糖果的進價是乙糖果進價的1.2倍,所以進回的甲糖果的重量比乙糖果少10kg

1)甲、乙兩種糖果的進價分別是多少?

2)若兩種糖果的銷售利潤率均為10%,則兩種糖果的售價分別是多少?

3)如果將兩種糖果混合在一起銷售,總利潤不變,那么混合后的糖果單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)與一次函數(shù)的圖像交于點,.

(1)求,的值;

(2)結(jié)合函數(shù)圖像,寫出當時,的取值范圍;

(3)軸上一點,若的面積是面積的3倍,請求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC上的點,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,則EC=( 。

A. 0.9cm B. 1cm C. 3.6cm D. 0.2cm

【答案】A

【解析】試題分析:根據(jù)平行線分線段成比例定理得到=,然后利用比例性質(zhì)求EC的長.

解:∵DE∥BC,

=,即=,

∴EC=0.9cm).

故選A

考點:平行線分線段成比例.

型】單選題
結(jié)束】
6

【題目】C是線段AB的黃金分割點(AC>BC,AB=10cm,則AC等于(

A. 6 cm B. cm C. cm D. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果點P(2x+6,x-4)在平面直角坐標系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A30),B0,3),過點By軸的垂線l,點C在線段AB上,連結(jié)OC并延長交直線l于點D,過點CCEOC交直線l于點E

1)求∠OBA的度數(shù),并直接寫出直線AB的解析式;

2)若點C的橫坐標為2,求BE的長;

3)當BE1時,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C

(1)求m的值;

(2)求點B的坐標;

(3)該二次函數(shù)圖象上有一點Dx,y)(其中x>0,y>0),使SABD=SABC,求點D的坐標.

查看答案和解析>>

同步練習冊答案