【題目】如圖1,拋物線yax2+a+2x+2a≠0),與x軸交于點(diǎn)A40),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)Pm0)(0m4),過(guò)點(diǎn)Px軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)M

1)求拋物線的解析式;

2)若PNPM14,求m的值;

3)如圖2,在(2)的條件下,設(shè)動(dòng)點(diǎn)P對(duì)應(yīng)的位置是P1,將線段OP1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OP2,旋轉(zhuǎn)角為αα90°),連接AP2、BP2,求AP2+的最小值.

【答案】1;(2m3;(3

【解析】

1)本題需先根據(jù)圖象過(guò)A點(diǎn),代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關(guān)于m的方程,則可求得m的值;(3)在y軸上取一點(diǎn)Q,使,可證的△P2OB∽△QOP2,則可求得Q點(diǎn)坐標(biāo),則可把AP2+BP2轉(zhuǎn)換為AP2+QP2,利用三角形三邊關(guān)系可知當(dāng)A、P2Q三點(diǎn)在一條線上時(shí),有最小值,則可求出答案.

解:(1)∵A4,0)在拋物線上,

016a+4a+2+2,解得a=﹣,

∴拋物線的解析式為y;

2)∵

∴令x0可得y2,

OB2,

OPm,

AP4m

PMx軸,

∴△OAB∽△PAN,

,

,

M在拋物線上,

PM+2,

PNMN13,

PNPM14,

,

解得m3m4(舍去);

3)在y軸上取一點(diǎn)Q,使,如圖,

由(2)可知P13,0),且OB2,

,且∠P2OB=∠QOP2,

∴△P2OB∽△QOP2,

,

∴當(dāng)Q0,)時(shí),QP2,

AP2+BP2AP2+QP2≥AQ,

∴當(dāng)A、P2Q三點(diǎn)在一條線上時(shí),AP2+QP2有最小值,

A4,0),Q0,),

AQ

AP2+BP2的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形ABCD中,ADBCAC、BD相交于點(diǎn)O,ABAC,ADCD,AB3,BC5.求:

1tanACD的值;

2)梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),將沿直線BE折疊后得到 ,延長(zhǎng)BGCD于點(diǎn)F,若 FD的長(zhǎng)為( )

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為慶祝五四青年節(jié),在20184月底組織該校學(xué)生舉辦了傳承五四精神共建和諧社土?xí)?/span>的演講比賽.為了解學(xué)生在演講比賽中的成績(jī)情況,學(xué)校隨機(jī)抽取了部分學(xué)生的演講比賽成績(jī)進(jìn)行統(tǒng)計(jì)(滿分:100分,等次:A.優(yōu)秀:90100分;B.良好:8089分;C.一般:6079分;D.較差:60分以下,不含60)得到如下不完整的圖表:

等次

頻數(shù)

頻率

A

a

0.25

B

b

0.5

C

3

m

D

2

0.1

根據(jù)以上信息解答下列問(wèn)題

(1)表中a_____,b_____,m_______,并補(bǔ)全頻數(shù)分布直方圖;

(2)根據(jù)抽查學(xué)生演講成績(jī)頻數(shù)統(tǒng)計(jì)表制作的扇形統(tǒng)計(jì)圖中,表示C等次部分的扇形中心角的度數(shù)是_______

(3)A等次中有2名女生,其余為男生,學(xué)校準(zhǔn)備從A等次學(xué)生中抽取2名學(xué)生組成演講組合參加全市五四青年杯演講比賽,求恰好抽取1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰ABC中,AB=BC,以AB為直徑的⊙OAC相交于點(diǎn)D,過(guò)點(diǎn)DDEBCAB延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.

(1)證明:DE是⊙O的切線;

(2)若BE=4,E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,

(3)若⊙O的半徑r=5,sinA=,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】假期小穎決定到游泳館游泳,游泳館門(mén)票有兩種:種是每天購(gòu)票進(jìn)館,沒(méi)有優(yōu)惠;種是每月先購(gòu)買(mǎi)貴賓卡,持貴賓卡購(gòu)票每張可減少8元.設(shè)小穎游泳次,(元)是按種購(gòu)票方案的費(fèi)用,(元)是按種購(gòu)票方案的費(fèi)用根據(jù)圖中信息解答問(wèn)題:

1)按種方案購(gòu)票,每張門(mén)票價(jià)格為 元;

2)按種方案購(gòu)票,求的函數(shù)解析式;

3)如果小穎假期30天,每天都到游泳館游泳一次,通過(guò)計(jì)算她選擇哪種購(gòu)票方案比較合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P和點(diǎn)關(guān)于y軸對(duì)稱,點(diǎn)和點(diǎn)關(guān)于直線l對(duì)稱,則稱點(diǎn)是點(diǎn)P關(guān)于y軸,直線l的二次對(duì)稱點(diǎn).

如圖1,點(diǎn)

若點(diǎn)B是點(diǎn)A關(guān)于y軸,直線的二次對(duì)稱點(diǎn),則點(diǎn)B的坐標(biāo)為______;

若點(diǎn)是點(diǎn)A關(guān)于y軸,直線的二次對(duì)稱點(diǎn),則a的值為______;

若點(diǎn)是點(diǎn)A關(guān)于y軸,直線的二次對(duì)稱點(diǎn),則直線的表達(dá)式為______;

如圖2,的半徑為上存在點(diǎn)M,使得點(diǎn)是點(diǎn)M關(guān)于y軸,直線的二次對(duì)稱點(diǎn),且點(diǎn)在射線上,b的取值范圍是______;

x軸上的動(dòng)點(diǎn),的半徑為2,若上存在點(diǎn)N,使得點(diǎn)是點(diǎn)N關(guān)于y軸,直線的二次對(duì)稱點(diǎn),且點(diǎn)y軸上,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)國(guó)家郵政局公布的數(shù)據(jù)顯示,2016年中國(guó)快遞業(yè)務(wù)量突破313.5億件,同比增長(zhǎng)51.7%,快遞業(yè)務(wù)量位居世界第一,業(yè)內(nèi)人士表示,快遞業(yè)務(wù)連續(xù)6年保持50%以上的高速增長(zhǎng),已成為中國(guó)經(jīng)濟(jì)的一匹黑馬,未來(lái)中國(guó)快遞業(yè)務(wù)仍將保持快速增長(zhǎng)勢(shì)頭,以下是根據(jù)相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖,請(qǐng)你預(yù)估2017年全國(guó)快遞的業(yè)務(wù)量大約為_______(精確的0.1)億元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線軸交于兩點(diǎn),與軸交于點(diǎn),

(1)求拋物線的表達(dá)式及其頂點(diǎn)的坐標(biāo);

(2)過(guò)點(diǎn)軸的垂線,交直線于點(diǎn),將拋物線沿其對(duì)稱軸向上平移個(gè)單位,使拋物線與線段(含線段端點(diǎn))只有1個(gè)公共點(diǎn).求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案