【題目】如圖所示是一個紙杯,它的母線延長后形成的立體圖形是圓錐,該圓錐的側面展開圖是扇形OAB,經測量,紙杯開口圓的直徑為6cm,下底面直徑為4cm,母線長EF=9cm,求扇形OAB的圓心角及這個紙杯的表面積.(結果保留根號和π)
【答案】解:由題意可知: =6πcm, =4π,設∠AOB=n,AO=R,則CO=R﹣9, 由弧長公式得:l= ,
∴ ,
解得:n=40,R=27,
故扇形OAB的圓心角是40度.
∵R=27,R﹣9=18,
∴S扇形OCD= ×4π×18=36π(cm2),
S扇形OAB= ×6π×27=81π(cm2),
紙杯側面積=S扇形OAB﹣S扇形OCD=81π﹣36π=45π(cm2),
紙杯底面積=π22=4π(cm2)
紙杯表面積=45π+4π=49π(cm2).
【解析】(1)設∠AOB=n°,AO=R,則CO=R﹣9,利用圓錐的側面展開圖扇形的弧長等于圓錐底面周長作為相等關系列方程,并聯(lián)立成方程組求解即可(2)求紙杯的側面積即為扇環(huán)的面積,需要用大扇形的面積減去小扇形的面積.紙杯表面積=S紙杯側面積+S紙杯底面積 .
【考點精析】通過靈活運用幾何體的展開圖和扇形面積計算公式,掌握沿多面體的棱將多面體剪開成平面圖形,若干個平面圖形也可以圍成一個多面體;同一個多面體沿不同的棱剪開,得到的平面展開圖是不一樣的,就是說:同一個立體圖形可以有多種不同的展開圖;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點在AD邊上以每秒1cm的速度從A向D運動,點Q在BC邊上,以每秒4cm的速度從C點出發(fā),在CB間往返運動,二點同時出發(fā),待P點到達D點為止,在這段時間內,線段PQ有( )次平行于AB.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于任意一點P(x,y),我們做以下規(guī)定:d(P)=|x|+|y|,稱d(P)為點P的坐標距離.
(1)已知:點P(3,﹣4),求點P的坐標距離d(P)的值.
(2)如圖,四邊形OABC為正方形,且點A、B在第一象限,點C在第四象限.
①求證:d(A)=d(C).
②若OC=2,且滿足d(A)+d(C)=d(B)+2,求點B坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片中,cm,cm。點在邊上,將沿折疊,得,連接, .
(1)當點落在邊上時, ;
(2)當點是的中點時,求的長;
(3)當分別滿足下列條件時,求相應的的長:
①;②.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(0,a),B(b,0),C(b,4)三點,其中a,b滿足關系式a=+2.若在第二象限內有一點P(m,1),使四邊形ABOP的面積與三角形ABC的面積相等,則點P的坐標為( )
A. (-3,1) B. (-2,1) C. (-4,1) D. (-2.5,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習有理數(shù)的乘法后,老師給同學們這樣一道題目:計算:49×(﹣5),看誰算的又快又對,有兩位同學的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對于以上兩種解法,你認為誰的解法較好?
(2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;
(3)用你認為最合適的方法計算:19×(﹣8)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點C逆時針旋轉75°,點E的對應點N恰好落在OA上,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出 平面內不在同一條直線上的三點確定一個面,那么平面內的四點(任意三點均不在同一直線上),能否在同一個面上呢?
初步思考
設不在同一條直線上的三點A、B、C確定的圓為⊙O.
(1)當C、D在線段AB的同側時.
如圖①,若點D在⊙O上,此時有∠ACB=∠ADB,理由是 .
如圖②,若點D在⊙O內,此時有∠ACB∠ADB;
如圖③,若點D在⊙O外,此時有∠ACB∠ADB(填“=”、“>”、“<”)
由上面的探究,請直接寫出A、B、C、D四點在同一個圓上的條件: .
類比學習
(2)仿照上面的探究思路,請?zhí)骄浚寒擟、D在線段AB的異側時的情形.
由上面的探究,請用文字語言直接寫出A、B、C、D四點在同一個圓上的條件: .
拓展延伸
(3)如何過圓上一點,僅用沒有刻度的直尺,作出已知直徑的垂線? 已知:如圖,AB是⊙O的直徑,點C在⊙O上,求作:CN⊥AB
作法:①連接CA、CB
②在CB上任取異于B、C的一點D,連接DA,DB;
③DA與CB相交于E點,延長AC、BD,交于F點;
④連接F、E并延長,交直徑AB與M;
⑤連接D、M并延長,交⊙O于N,連接CN,則CN⊥AB.
請安上述作法在圖④中作圖,并說明CN⊥AB的理由.(提示:可以利用(2)中的結論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α為60°,又從A點測得D點的俯角β為30°,若旗桿底部G點為BC的中點,求矮建筑物的高CD.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com