【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a>0).
(1)當(dāng)a=1時,求拋物線與x軸的交點坐標(biāo)及對稱軸;
(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標(biāo);
②將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達式;
(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.
【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax2+4ax﹣5(3)a=或
【解析】
試題分析:(1)將a=1代入解析式,即可求得拋物線與x軸交點;
(2)①化簡拋物線解析式,即可求得兩個點定點的橫坐標(biāo),即可解題;
②根據(jù)拋物線翻折理論即可解題;
(3)根據(jù)(2)中拋物線C2解析式,分類討論y=2或﹣2,即可解題
試題解析:(1)當(dāng)a=1時,拋物線解析式為y=x2﹣4x﹣5=(x﹣2)2﹣9,
∴對稱軸為y=2;
∴當(dāng)y=0時,x﹣2=3或﹣3,即x=﹣1或5;
∴拋物線與x軸的交點坐標(biāo)為(﹣1,0)或(5,0);
(2)①拋物線C1解析式為:y=ax2﹣4ax﹣5,
整理得:y=ax(x﹣4)﹣5;
∵當(dāng)ax(x﹣4)=0時,y恒定為﹣5;
∴拋物線C1一定經(jīng)過兩個定點(0,﹣5),(4,﹣5);
②這兩個點連線為y=﹣5;
將拋物線C1沿y=﹣5翻折,得到拋物線C2,開口方向變了,但是對稱軸沒變;
∴拋物線C2解析式為:y=﹣ax2+4ax﹣5,
(3)拋物線C2的頂點到x軸的距離為2,
則x=2時,y=2或者﹣2;
當(dāng)y=2時,2=﹣4a+8a﹣5,解得,a=;
當(dāng)y=﹣2時,﹣2=﹣4a+8a﹣5,解得,a=;
∴a=或;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠XOY=90°,點A,B分別在射線OX,OY上移動.BE是
∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,則∠ACB的
大小是否變化?如果保持不變,請說明原因;如果隨點A,B的移動而發(fā)生變化,求
出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為直線AD上一點,∠AOC與∠AOB互補,OM、ON分別是∠AOC、∠AOB的平分線,∠MON=56°.
⑴ ∠COD與∠AOB相等嗎?請說明理由;
⑵ 求∠BOC的度數(shù);
⑶ 求∠AOB與∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點D的邊AC上,將邊OA沿OD折疊,點A的對應(yīng)邊為A'.若點A'到矩形較長兩對邊的距離之比為1:3,則點A'的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計圖中,求A類對應(yīng)扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x=﹣2,則x0、x﹣1、x﹣2之間的大小關(guān)系是( )
A.x0>x﹣2>x﹣1
B.x﹣2>x﹣1>x0
C.x0>x﹣1>x﹣2
D.x﹣1>x﹣2>x0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com