【題目】【問(wèn)題提出】
如圖①,已知△ABC是等腰三角形,點(diǎn)E在線段AB上,點(diǎn)D在直線BC上,且ED=EC,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°至△ACF連接EF
試證明:AB=DB+AF
【類比探究】
(1)如圖②,如果點(diǎn)E在線段AB的延長(zhǎng)線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由
(2)如果點(diǎn)E在線段BA的延長(zhǎng)線上,其他條件不變,請(qǐng)?jiān)趫D③的基礎(chǔ)上將圖形補(bǔ)充完整,并寫(xiě)出AB,DB,AF之間的數(shù)量關(guān)系,不必說(shuō)明理由.
【答案】證明見(jiàn)解析;(1)AB=BD﹣AF;(2)AF=AB+BD.
【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出△EDB與FEA全等的條件BE=AF,再結(jié)合已知條件和旋轉(zhuǎn)的性質(zhì)推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代換即可得出結(jié)論.(2)先畫(huà)出圖形證明∴△DEB≌△EFA,方法類似于(1);(3)畫(huà)出圖形根據(jù)圖形直接寫(xiě)出結(jié)論即可.
試題解析:(1)證明:DE=CE=CF,△BCE
由旋轉(zhuǎn)60°得△ACF,
∴∠ECF=60°,BE=AF,CE=CF,
∴△CEF是等邊三角形,
∴EF=CE,
∴DE=EF,∠CAF=∠BAC=60°,
∴∠EAF=∠BAC+∠CAF=120°,
∵∠DBE=120°,
∴∠EAF=∠DBE,
又∵A,E,C,F四點(diǎn)共圓,
∴∠AEF=∠ACF,
又∵ED=DC,
∴∠D=∠BCE,∠BCE=∠ACF,
∴∠D=∠AEF,
∴△EDB≌FEA,
∴BD=AF,AB=AE+BF,
∴AB=BD+AF.
類比探究(1)DE=CE=CF,△BCE由旋轉(zhuǎn)60°得△ACF,
∴∠ECF=60°,BE=AF,CE=CF,
∴△CEF是等邊三角形,
∴EF=CE,
∴DE=EF,∠EFC=∠BAC=60°,
∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,
∴∠FCG=∠FEA,
又∠FCG=∠EAD
∠D=∠EAD,
∴∠D=∠FEA,
由旋轉(zhuǎn)知∠CBE=∠CAF=120°,
∴∠DBE=∠FAE=60°
∴△DEB≌△EFA,
∴BD=AE, EB=AF,
∴BD=FA+AB.
即AB=BD-AF.
(2)AF=BD+AB(或AB=AF-BD)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=-x+4的圖象與x軸和y軸分別交于點(diǎn)A和B,再將△AOB沿直線CD對(duì)折,使點(diǎn)A與點(diǎn)B重合、直線CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.
(1)點(diǎn)A的坐標(biāo)為_________,點(diǎn)B的坐標(biāo)為_________;
(2)在直線AB上是否存在點(diǎn)P使得△APO的面積為12?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)求OC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)均為 1.格點(diǎn)三角形 ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn) A、C 的坐標(biāo)分別是(﹣2,0),(﹣3,3).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系,寫(xiě)出點(diǎn) B 的坐標(biāo);
(2)把△ABC 繞坐標(biāo)原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°得到△A1B1C1,畫(huà)出△A1B1C1,寫(xiě)出點(diǎn)
B1的坐標(biāo);
(3)以坐標(biāo)原點(diǎn) O 為位似中心,相似比為 2,把△A1B1C1 放大為原來(lái)的 2 倍,得到△A2B2C2 畫(huà)出△A2B2C2,使它與△AB1C1 在位似中心的同側(cè);
請(qǐng)?jiān)?x 軸上求作一點(diǎn) P,使△PBB1 的周長(zhǎng)最小,并寫(xiě)出點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,AB=AC,∠B=36°,D、E是BC上兩點(diǎn),且∠ADE=∠AED=2∠BAD,則圖中等腰三角形共有( 。
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C在線段AB上,在AB的同側(cè)作等邊三角形△ACM和△BCN,連接AN,BM,若∠MBN=38°,則∠ANB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點(diǎn)數(shù)是4
C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃
D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,對(duì)角線AC,BE相交于點(diǎn)M.若AB=1,則BM的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出如下收費(fèi)標(biāo)準(zhǔn):
如果人數(shù)不超過(guò)人,人均旅游費(fèi)用為元;
如果人數(shù)超過(guò)人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.
某單位共付給該旅行社旅游費(fèi)用元,問(wèn):該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面內(nèi)有一等腰Rt△ABC,∠ACB=90°,點(diǎn)A在直線l上.過(guò)點(diǎn)C作CE⊥1于點(diǎn)E,過(guò)點(diǎn)B作BF⊥l于點(diǎn)F,測(cè)量得CE=3,BF=2,則AF的長(zhǎng)為( 。
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com