【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(m,-1),
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出不等式x+b>的解.
【答案】(1)y=,y=x+3;(2);(3)x>1或-4<x<0
【解析】試題分析:(1)根據(jù)反比例函數(shù)y=的圖象過點A(1,4)利用待定系數(shù)法求出即可;把B(m,﹣1)代入所求的反比例函數(shù)的解析式得出B點坐標,進而利用待定系數(shù)法求出一次函數(shù)解析式即可;
(2)將三角形AOB分割為S△AOB=S△BOC+S△AOC,求出即可.
(3)根據(jù)函數(shù)的圖象和交點坐標即可求得.
試題解析:解:(1)把A點坐標(1,4)分別代入y=,y=x+b,得:k=1×4,1+b=4,解得:k=4,b=3,∴反比例函數(shù)、一次函數(shù)的解析式分別為y=,y=x+3.
(2)當y=﹣1時,x=﹣4,∴B(﹣4,﹣1).又∵當y=0時,x+3=0,x=﹣3,∴C(﹣3,0),∴S△AOB=S△AOC+S△BOC=×4+×3×1=.
(3)不等式x+b>的解是x>1或﹣4<x<0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B與∠C的平分線交于點O,過點O作DE∥BC,分別交AB,AC于點D,E.若AB=5,AC=4,則△ADE的周長是______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠CFE為________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1的單位正方形組成的網(wǎng)格中,按要求畫出坐標系及△A1B1C1及△A2B2C2;
(1)若點A、C的坐標分別為(﹣3,0)、(﹣2,3),請畫出平面直角坐標系并指出點B的坐標;
(2)畫出△ABC關于y軸對稱再向上平移1個單位后的圖形△A1B1C1;
(3)以圖中的點D為位似中心,將△A1B1C1作位似變換且把邊長放大到原來的兩倍,得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=的圖象如圖所示,則以下結論:①m<0;②在每個分支上y隨x的增大而增大;③若點A(-1,a),點B(2,b)在圖象上,則a <b;④若點P(x,y)在圖象上,則點P1(-x,y)也在圖象上.其中正確的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, ,點為邊上一點, ,且,點關于直線的對稱點為,連接,又的邊上的高為.
(1)判斷直線是否平行?并說明理由;
(2)證明: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知12箱蘋果,以每箱10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),稱重記錄如下:
+0.2 ,—0.2,+0. 7,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.2,—0.5。
⑴求12箱蘋果的總重量;
⑵若每箱蘋果的重量標準為100.5(千克),則這12箱有幾箱不合乎標準的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程-(k+2)x+2k=0.
(1)試說明無論k取何值時,這個方程一定有實數(shù)根;
(2)已知等腰的一邊a=1,若另兩邊b、c恰好是這個方程的兩個根,求的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com