【題目】如圖,先研究下面三角形、四邊形、五邊形、六邊形…多邊形的邊數(shù)n及其對角線條數(shù)t的關系,再完成下面問題:
(1)若一個多邊形是七邊形,它的對角線條數(shù)為 ,n邊形的對角線條數(shù)為t= (用n表示).
(2)求正好65條對角線的多邊形是幾邊形.
科目:初中數(shù)學 來源: 題型:
【題目】.已知:在矩形中,是對角線,于點,于點;
(1)如圖1,求證:;
(2)如圖2,當時,連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形面積的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教育部基礎教育司負責人解讀“2020新中考”時強調要注重學生分析與解決問題的能力,要增強學生的創(chuàng)新精神和綜合素質.王老師想嘗試改變教學方法,將以往教會學生做題改為引導學生會學習.于是她在菱形的學習中,引導同學們解決菱形中的一個問題時,采用了以下過程(請解決王老師提出的問題):
先出示問題(1):如圖1,在等邊三角形中,為上一點,為上一點,如果,連接、,、相交于點,求的度數(shù).
通過學習,王老師請同學們說說自己的收獲.小明說發(fā)現(xiàn)一個結論:在這個等邊三角形中,只要滿足,則的度數(shù)就是一個定值,不會發(fā)生改變.緊接著王老師出示了問題(2):如圖2,在菱形中,,為上一點,為上一點,,連接、,、相交于點,如果,,求出菱形的邊長.
問題(3):通過以上的學習請寫出你得到的啟示(一條即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,AB=AC,以AB為直徑作⊙O,分別交BC于點D,交CA的延長線于點E,過點D作于點H,連接DE交線段OA于點F.
(1)試猜想直線DH與⊙O的位置關系,并說明理由;
(2)若AE=AH,EF=4,求DF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:連接拋物線上兩點的線段叫拋物線的弦,在這兩點之間拋物線上的任意一點P與此兩點構成的三角形稱作拋物線的弦三角,點P稱作弦錐,設點P的橫坐標為x.
已知拋物線經(jīng)過A(1,2)、B(m,n)、C(3,﹣2)三點,P是拋物線上AC之間的一點,以AC為弦的弦三角為△PAC.
(1)圖一,當m=2,n=1時,求該拋物線的解析式,若x=k1時△PAC的面積最大,求k1的值.
(2)圖二,當m=2,n≠1時,用n表示該拋物線的解析式,若x=k2時△PAC的面積最大,求k2的值.k1與k2有何數(shù)量關系?
(3)圖三,當m≠2,n≠1時,用m,n表示該拋物線的解析式,若x=k3時△PAC的面積最大,求k3的值.觀察圖1,2,3,過定點A、C,根據(jù)B在各種不同位置所得計算結果,你發(fā)現(xiàn)通過兩個定點的拋物線系中,以此兩點為弦的弦三角的面積取得最大值時,弦錐的橫坐標有何規(guī)律?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.
(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為 ;
(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】岳陽市整治農村“空心房”新模式,獲評全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對轄區(qū)內“空心房”進行整治,騰退土地1200公頃用于復耕和改造,其中復耕土地面積比改造土地面積多600公頃.
(1)求復耕土地和改造土地面積各為多少公頃;
(2)該地區(qū)對需改造的土地進行合理規(guī)劃,因地制宜建設若干花卉園和休閑小廣場,要求休閑小廣場總面積不超過花卉園總面積的,求休閑小廣場的總面積最多為多少公頃.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com