如圖,已知AC平分∠PAQ,點(diǎn)B,B′分別在邊AP,AQ上.下列條件中不能推出AB=AB′的是


  1. A.
    BB′⊥AC
  2. B.
    BC=B′C
  3. C.
    ∠ACB=∠ACB′
  4. D.
    ∠ABC=∠AB′C
B
分析:根據(jù)已知條件結(jié)合三角形全等的判定方法,驗(yàn)證各選項(xiàng)提交的條件是否能證△ABC≌△AB′C即可.
解答:解:如圖:∵AC平分∠PAQ,點(diǎn)B,B′分別在邊AP,AQ上,
A:若BB′⊥AC,
在△ABC與△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,
∴△ABC≌△AB′C,
AB=AB′;
B:若BC=B′C,不能證明△ABC≌△AB′C,即不能證明AB=AB′;
C:若∠ACB=∠ACB′,則在△ABC與△AB'C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;
D:若∠ABC=∠AB′C,則∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.
故選B.
點(diǎn)評(píng):本題考查的是三角形角平分線的性質(zhì)及三角形全等的判定;做題時(shí)要結(jié)合已知條件在圖形上的位置對(duì)選項(xiàng)逐個(gè)驗(yàn)證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AC平分∠BAD,∠1=∠2,求證:AB=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,已知AC平分∠BAD,∠1=∠2,AB=DC=3,則BC=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,已知AC平分∠BAD,AB∥DC,AB=DC=3,則AD=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,已知AC平分∠BAD,∠1=∠2,求證:AB=AD.
精英家教網(wǎng)精英家教網(wǎng)
(2)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,AC交⊙O于點(diǎn)E,∠BAC=45°.
①求∠EBC的度數(shù);
②求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)試說明CE=CF.
(2)△BCE與△DCF全等嗎?試說明理由.
(3)若AC=10,CE=6,AD=5,求DF的長(zhǎng)
(4)若AB=21,AD=9,BC=CD=10,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案