【題目】某同學準備購買筆和本子送給農(nóng)村希望小學的同學,在市場上了解到某種本子的單價比某種筆的單價少4元,且用30元買這種本子的數(shù)量與用50元買這種筆的數(shù)量相同.
(1)求這種筆和本子的單價;
(2)該同學打算用自己的100元壓歲錢購買這種筆和本子,計劃100元剛好用完,并且筆和本子都買,請列出所有購買方案.

【答案】
(1)解:設這種筆單價為x元,則本子單價為(x﹣4)元,由題意得:

= ,

解得:x=10,

經(jīng)檢驗:x=10是原分式方程的解,

則x﹣4=6.

答:這種筆單價為10元,則本子單價為6元;


(2)解:設恰好用完100元,可購買這種筆m支和購買本子n本,

由題意得:10m+6n=100,

整理得:m=10﹣ n,

∵m、n都是正整數(shù),

∴①n=5時,m=7,②n=10時,m=4,③n=15,m=1;

∴有三種方案:

①購買這種筆7支,購買本子5本;

②購買這種筆4支,購買本子10本;

③購買這種筆1支,購買本子15本.


【解析】(1)首先設這種筆單價為x元,則本子單價為(x﹣4)元,根據(jù)題意可得等量關系:30元買這種本子的數(shù)量=50元買這種筆的數(shù)量,由等量關系可得方程 = ,再解方程可得答案;(2)設恰好用完100元,可購買這種筆m支和購買本子n本,根據(jù)題意可得這種筆的單價×這種筆的支數(shù)m+本子的單價×本子的本數(shù)n=1000,再求出整數(shù)解即可.
【考點精析】根據(jù)題目的已知條件,利用分式方程的應用的相關知識可以得到問題的答案,需要掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1∥l2 , l1、l2之間的距離為8,點P到直線l1的距離為6,點Q到直線l2的距離為4,PQ=4 ,在直線l1上有一動點A,直線l2上有一動點B,滿足AB⊥l2 , 且PA+AB+BQ最小,此時PA+BQ=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C為某公園的三個景點,景點A和景點B之間有一條筆直的小路,現(xiàn)要在小路上建一個涼亭P,使景點B、景點C到?jīng)鐾的距離之和等于景點B到景點A的距離,請用直尺和圓規(guī)在所給的圖中作出點P.(不寫作法和證明,只保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷.某藥店準備購進一批口罩,已知1個A型口罩和3個B型口罩共需26元;3個A型口罩和2個B型口罩共需29元.
(1)求一個A型口罩和一個B型口罩的售價各是多少元?
(2)藥店準備購進這兩種型號的口罩共50個,其中A型口罩數(shù)量不少于35個,且不多于B型口罩的3倍,有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx﹣3(k≠0)的圖象與x軸,y軸分別交于A,B兩點,與反比例函數(shù)y= (x>0)交于C點,且AB=AC,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+2x+3與x軸交于點A,B(A在B的左側),與y軸交于點C.
(1)求直線BC的解析式;
(2)拋物線的對稱軸上存在點P,使∠APB=∠ABC,利用圖1求點P的坐標;

(3)點Q在y軸右側的拋物線上,利用圖2比較∠OCQ與∠OCA的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在距離鐵軌200米的B處,觀察由南寧開往百色的“和諧號”動車,當動車車頭在A處時,恰好位于B處的北偏東60°方向上;10秒鐘后,動車車頭到達C處,恰好位于B處的西北方向上,則這時段動車的平均速度是( )米/秒.

A.20( +1)
B.20( ﹣1)
C.200
D.300

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD分別與⊙O相切于B,D兩點,且AB⊥CD,垂足為P,連接BD,若BD=4,則陰影部分的面積為

查看答案和解析>>

同步練習冊答案