【題目】某校八年級(jí)學(xué)生全部參加“初二生物地理會(huì)考”,從中抽取了部分學(xué)生的生物考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A,B,C,D四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題(說(shuō)明:測(cè)試總?cè)藬?shù)的前30%考生為A等級(jí),前30%至前70%為B等級(jí),前70%至前90%為C等級(jí),90%以后為D等級(jí))
(1)抽取了 名學(xué)生成績(jī);
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中A等級(jí)所在的扇形的圓心角度數(shù)是 ;
(4)若測(cè)試總?cè)藬?shù)前90%為合格,該校初二年級(jí)有900名學(xué)生,求全年級(jí)生物合格的學(xué)生共約多少人.
【答案】(1)50;(2)見(jiàn)解析;(3)72°;(4)全年級(jí)生物合格的學(xué)生共約810人.
【解析】
(1)根據(jù)B等級(jí)的人數(shù)除以占的百分比確定出學(xué)生總數(shù)即可;
(2)求出D等級(jí)的人數(shù),補(bǔ)全頻數(shù)分布直方圖即可;
(3)求出A等級(jí)的百分比,乘以360即可得到結(jié)果;
(4)由學(xué)生總數(shù)乘以90%即可得到結(jié)果.
解:(1)根據(jù)題意得:23÷46%=50(名),
則抽取了50名學(xué)生成績(jī);
故答案為:50;
(2)D等級(jí)的學(xué)生有50﹣(10+23+12)=5(名),
補(bǔ)全直方圖,如圖所示:
(3)根據(jù)題意得:20%×360°=72°,
故答案為:72°;
(4)根據(jù)題意得:900×90%=810(人),
則全年級(jí)生物合格的學(xué)生共約810人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,BC=BD,AD=DE=EB,則∠A的度數(shù)是( 。
A.30°B.36°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某通訊公司推出了移動(dòng)電話的兩種計(jì)費(fèi)方式(詳情見(jiàn)下表)。
月使用費(fèi)/元 | 主叫限定時(shí)間/分 | 主叫超時(shí)費(fèi)/(元/分) | 被叫 | |
方式一 | 58 | 150 | 0.25 | 免費(fèi) |
方式二 | 88 | 350 | 0.19 | 免費(fèi) |
設(shè)一個(gè)月內(nèi)使用移動(dòng)電話主叫的時(shí)間為分(為正整數(shù)),請(qǐng)根據(jù)表中提供的信息回答下列問(wèn)題:
(1)用含有的式子填寫下表:
≤150 | 150<<350 | =350 | >350 | |
方式一計(jì)費(fèi)/元 | 58 |
| 108 |
|
方式二計(jì)費(fèi)/元 | 88 | 88 | 88 |
|
(Ⅰ)當(dāng)為何值時(shí),兩種計(jì)費(fèi)方式的費(fèi)用相等?
(Ⅱ)請(qǐng)根據(jù)(Ⅰ)和(Ⅱ)的計(jì)算及生活經(jīng)驗(yàn),直接寫出不同時(shí)間段,選用哪種計(jì)費(fèi)方式省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是一次函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C在x軸的負(fù)半軸上,且∠ACB=∠OAB,△OAB的面積為4,則點(diǎn)C的坐標(biāo)為( )
A.(﹣8,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)將三張形狀、大小完全相同的平行四邊形透明紙片分別放在方格紙中,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,并且平行四邊形 紙片的每個(gè)頂點(diǎn)與小正方形的頂點(diǎn)重合(如圖①、圖②、圖③).
圖②矩形(正方形)
,
分別在圖①、圖②、圖③中,經(jīng)過(guò)平行四邊形紙片的任意一個(gè)頂點(diǎn)畫一條裁剪線,沿此裁剪線將平行四邊形紙片裁成兩部分,并把這兩部分重新拼成符合下列要求的幾何圖形.
要求:
(1)在左邊的平行四邊形紙片中畫一條裁剪線,然后在右邊相對(duì)應(yīng)的方格紙中,按實(shí)際大小畫出所拼成的符合要求的幾何圖形.
(2)裁成的兩部分在拼成幾何圖形時(shí)要互不重疊且不留空隙.
(3)所畫出的幾何圖形的各頂點(diǎn)必須與小正方形的頂點(diǎn)重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)3.3 ,-2 ,0 , ,-3.5 ;
(1) 比較這些數(shù)的絕對(duì)值的大小,并將這些數(shù)的絕對(duì)值用“>”號(hào)連接起來(lái);
(2) 比較這些數(shù)的相反數(shù)的大小,并將這些數(shù)的相反數(shù)用“<”號(hào)連接起來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BF為⊙O的直徑,直線AC交⊙O于A,B兩點(diǎn),點(diǎn)D在⊙O上,BD平分∠OBC,DE⊥AC于點(diǎn)E.
(1)求證:直線DE是⊙O的切線;
(2)若 BF=10,sin∠BDE=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.
(1)求證:△OCP∽△PDA;
(2)若△OCP與△PDA的面積比為1:4,①求邊CP的長(zhǎng);②求邊AB的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線相交于點(diǎn),.
(1)已知,求的度數(shù);
(2)如果是的平分線,那么是的平分線嗎?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com