【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4)
(1)請(qǐng)畫(huà)出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1 , 直接寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫(huà)出△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的圖形△A2B2C2 , 直接寫(xiě)出點(diǎn)A2的坐標(biāo);
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
【答案】
(1)解:如圖所示:點(diǎn)A1的坐標(biāo)(﹣3,1)
(2)解:如圖所示:點(diǎn)A2的坐標(biāo)(﹣1,﹣1)
(3)解:找出A的對(duì)稱點(diǎn)A′(1,﹣1),
連接BA′,與x軸交點(diǎn)即為P;
如圖所示:點(diǎn)P坐標(biāo)為(2,0).
【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對(duì)應(yīng)點(diǎn)的位置,然后順次連接即可;(2)找出點(diǎn)A、B、C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)的位置,然后順次連接即可;(3)找出A的對(duì)稱點(diǎn)A′,連接BA′,與x軸交點(diǎn)即為P.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用軸對(duì)稱-最短路線問(wèn)題的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,以對(duì)角線AC為邊作第二個(gè)正方形,再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去,第n個(gè)正方形的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=2x﹣4的圖象與x軸、y軸分別相交于點(diǎn)A、B,點(diǎn)P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為d1、d2 .
(1)當(dāng)P為線段AB的中點(diǎn)時(shí),求d1+d2的值。
(2)直接寫(xiě)出d1+d2的范圍,并求當(dāng)d1+d2=3時(shí)點(diǎn)P的坐標(biāo)。
(3)若在線段AB上存在無(wú)數(shù)個(gè)P點(diǎn),使d1+ad2=4(a為常數(shù)),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點(diǎn)E,連接DE、BE,過(guò)點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:
(1)四邊形EBFD是矩形;
(2)DG=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC 上,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線x=﹣1,下列結(jié)論:
①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正確的是( )
A.①②
B.只有①
C.③④
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問(wèn)學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭(zhēng)議的情境:
請(qǐng)根據(jù)上面的信息,解決問(wèn)題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,拋物線l1:y=ax2﹣4ax+5+4a(a<0)的頂點(diǎn)為A,直線l2:y=kx+3過(guò)點(diǎn)A,直線l2與拋物線l1及y軸分別交于B,C.
(1)求k的值;
(2)若B為AC的中點(diǎn),求a的值;
(3)在(2)的條件下,直接寫(xiě)出不等式ax2﹣4ax+5+4a<kx+3的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com