精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,點E在邊BC上,點F在邊AD的延長線上,且DF=BE,EF與CD交于點G.

(1)求證:BD∥EF;
(2)若 = ,BE=4,求EC的長.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD∥BC.

∵DF=BE,

∴四邊形BEFD是平行四邊形,

∴BD∥EF;


(2)解:∵四邊形BEFD是平行四邊形,

∴DF=BE=4.

∵DF∥EC,

∴△DFG∽CEG,

= ,

∴CE= =4× =6.


【解析】(1)由平行四邊形的性質得出AD∥BC,又DF=BE,,利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形BEFD是平行四邊形,再利用平行四邊形的對邊平行得出BD∥EF;
(2)根據平行四邊形的性質得出DF=BE=4.根據平行于三角形一邊的直線截其它兩邊的延長線,所得的三角形與原三角形相似得出△DFG∽CEG,再由相似三角形對應邊成比例得出結論。
【考點精析】本題主要考查了平行四邊形的判定與性質和相似三角形的判定與性質的相關知識點,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=ax2+bx+c(a,b,c是常數,a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+2與x軸交于A,B兩點,與y軸交于點C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點E.

(1)求拋物線的解析式;
(2)如圖2,點P是直線EO上方拋物線上的一個動點,過點P作y軸的平行線交直線EO于點G,作PH⊥EO,垂足為H.設PH的長為l,點P的橫坐標為m,求l與m的函數關系式(不必寫出m的取值范圍),并求出l的最大值;

(3)如果點N是拋物線對稱軸上的一點,拋物線上是否存在點M,使得以M,A,C,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

解答“已知x﹣y=2,且x>1,y<0,試確定x+y的取值范圍”有如下解法

解:∵x﹣y=2,∴x=y+2 又∵x>1∴y+2>1∴y>﹣1

∵y<0∴﹣1<y<0…①

同理可得1<x<2…②

①+②得:﹣1+1<x+y<0+2∴x+y的取值范圍是0<x+y<2

按照上述方法,完成下列問題:

(1)已知x﹣y=3,且x>2,y<1,則x+y的取值范圍是   

(2)已知關于x,y的方程組的解都是正數

求a的取值范圍;若a﹣b=4,求a+b的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于二次函數y=x2﹣2mx﹣3,下列結論錯誤的是(
A.它的圖象與x軸有兩個交點
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對稱軸在y軸的右側
D.x<m時,y隨x的增大而減小

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點,三點.

1)在平面直角坐標中畫出,求的面積

2)在軸上是否存在一點使得的面積等于的面積?若存在,求出點坐標;若不存在,說明理由.

3)如果在第二象限內有一點,用含的式子表示四邊形的面積;

4)且四邊形的面積是的面積的三倍,是否存在點,若存在,求出滿足條件的點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知三角形的兩邊長分別為57,則第三邊的中線長x的取值范圍是( )

A. B. C. D. 無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.

(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;

(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;

(3)從火車站到河流怎樣走最近,畫圖并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為△ABC內任意一點,若將△ABC作平移變換,使A點落在B點的位置上,已知A(3,4)B(2,2)C(2,-2)

(1) 請直接寫出B點、C點、P點的對應點B1C1,P1的坐標;

(2) 求△AOC的面積SAOC

查看答案和解析>>

同步練習冊答案