【題目】(12分)在等腰△ABC中,AB=AC=2, ∠BAC=120°,AD⊥BC于D,點(diǎn)O、點(diǎn)P分別在射線AD、BA上的運(yùn)動(dòng),且保證∠OCP=60°,連接OP.
(1)當(dāng)點(diǎn)O運(yùn)動(dòng)到D點(diǎn)時(shí),如圖一,此時(shí)AP=______,△OPC是什么三角形。
(2)當(dāng)點(diǎn)O在射線AD其它地方運(yùn)動(dòng)時(shí),△OPC還滿足(1)的結(jié)論嗎?請(qǐng)用利用圖二說(shuō)明理由。
(3)令A(yù)O=x,AP=y,請(qǐng)直接寫(xiě)出y關(guān)于x的函數(shù)表達(dá)式,以及x的取值范圍。
圖一 圖二
【答案】(1)1,等邊三角形;(2)理由見(jiàn)解析;(3)當(dāng)時(shí),y=2-x;當(dāng)時(shí),
y=x-2
【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)得到∠B=∠ACB=30°,求得∠ACP=30°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(2)過(guò)C作CE⊥AP于E,根據(jù)等邊三角形的性質(zhì)得到CD=CE,根據(jù)全等三角形的性質(zhì)得到OC=OP,由等邊三角形的判定即可得到結(jié)論;(3)分兩種情況解決,在AB上找到Q點(diǎn)使得AQ=OA,則△AOQ為等邊三角形,根據(jù)求得解實(shí)現(xiàn)的性質(zhì)得到PA=BQ,求得AC=AO+AP,即可得到結(jié)論.
試題解析:
(1)AD=AP=1,
∵AB=AC=2,∠BAC=120°,
∴∠B=∠ACB=30°,
∵∠OCP=60°,
∴∠ACP=30°,
∵∠CAP=180°﹣∠BAC=60°,
∵AD⊥BC,
∴∠DAC=60°,
在△ADC與△APC中, ,
∴△ACD≌△ACP,
∴CD=CP,
∴△PCO是等邊三角形;
(2)△OPC還滿足(1)的結(jié)論,
理由:過(guò)C作CE⊥AP于E,
∵∠CAD=∠EAC=60°,
AD⊥CD,
∴CD=CE,
∴∠DCE=60°,
∴∠OCE=∠PCE,
在△OCD與△PCE中, ,
∴△OCD≌△PCE,
∴OC=OP,
∴△OPC是等邊三角形;
(3)當(dāng)0<x≤2時(shí),
在AB上找到Q點(diǎn)使得AQ=OA,則△AOQ為等邊三角形,
則∠BQO=∠PAO=120°,
在△BQO和△PAO中, ,
∴△BQO≌△PAO(AAS),
∴PA=BQ,
∵AB=BQ+AQ,
∴AC=AO+AP,
∵AO=x,AP=y,
∴y=﹣x+2;
當(dāng)時(shí), 利用同樣的方法可求得y=x-2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)80cm,寬70cm的矩形鐵皮,將四個(gè)角各剪去一個(gè)邊長(zhǎng)為xcm的小正方形后,剩余部分剛好圍成一個(gè)底面積為3000cm2的無(wú)蓋長(zhǎng)方體盒子,求小正方形邊長(zhǎng)xcm時(shí),可根據(jù)下列方程( )
A. (80﹣x)(70﹣x)=3000 B. (80﹣2x)(70﹣2x)=3000
C. 80×70﹣4x2=3000 D. 80×70﹣4x2﹣(80+70)x=3000
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016寧夏第23題)已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我縣“果菜大王”王大炮收貨番茄20噸,青椒12噸.現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛將這批果菜全部運(yùn)往外地銷售,已知一輛甲種貨車可裝番茄4噸和青椒1噸,一輛乙種貨車可裝番茄和青椒各2噸.
(1)王燦有幾種方案安排甲、乙兩種貨車可一次性地將果菜運(yùn)到銷售地?
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)300元,乙種貨車每輛要付運(yùn)輸費(fèi)240元,則果農(nóng)王大炮應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若0°<∠A<45°,那么sinA﹣cosA的值( 。
A. 大于0 B. 小于0 C. 等于0 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.所有命題都是定理
B.三角形的一個(gè)外角大于它的任一內(nèi)角
C.三角形的外角和等于180°
D.公理和定理都是真命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了獎(jiǎng)勵(lì)初三優(yōu)秀畢業(yè)生,計(jì)劃購(gòu)買一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購(gòu)買1臺(tái)平板電腦3 000元,購(gòu)買1臺(tái)學(xué)習(xí)機(jī)800元.
(1)學(xué)校根據(jù)實(shí)際情況,決定購(gòu)買平板電腦和學(xué)習(xí)機(jī)共100臺(tái),要求購(gòu)買的總費(fèi)用不超過(guò)168 000元,則購(gòu)買平板電腦最多多少臺(tái)?
(2)在(1)的條件下,購(gòu)買學(xué)習(xí)機(jī)的臺(tái)數(shù)不超過(guò)平板電腦臺(tái)數(shù)的1.7倍.請(qǐng)問(wèn)有哪幾種購(gòu)買方案?哪種方案最省錢?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com