【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:
①△ABG≌△AFG;② BG=GC;③ AG∥CF;④∠GAE=45°.
則正確結(jié)論的個(gè)數(shù)有( )
A. 1B. 2C. 3D. 4
【答案】D
【解析】
根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6-x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,推出AG∥CF,根據(jù)全等得出∠DAE=∠FAE,∠BAG=∠FAG.
解:∵四邊形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折疊得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中
,
∴Rt△ABG≌Rt△AFG(HL).
∴①正確;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
設(shè)BG=x,則CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.
∵CG=6-x,CE=4,EG=x+2,
∴(6-x)2+42=(x+2)2,解得:x=3.
∴BG=GF=CG=3.
∴②正確;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正確;
∵△ADE沿AE折疊得到△AFE,
∴△DAE≌△FAE.
∴∠DAE=∠FAE.
∵△ABG≌△AFG,
∴∠BAG=∠FAG.
∵∠BAD=90°,
∴∠EAG=∠EAF+∠GAF=×90°=45°.
∴④正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測(cè)量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測(cè)得雕像頂端A的仰角為60°,求雕像AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列說(shuō)法①∠AOC=α﹣90°;②∠EOB=180°﹣α;③∠AOF=360°﹣2α,其中正確的是( )
A. ①②B. ①③C. ②③D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一座大廈(圖中BC所示)前面30m的地面上,有一盞地?zé)?/span>A照射大廈,身高為1.6m的小亮(圖中EF所示)站在大廈和燈之間,若小亮從現(xiàn)在所處位置徑直走向大廈,當(dāng)他走到距離大廈只有5m的D處時(shí)停下.
(1)請(qǐng)?jiān)趫D中畫出此時(shí)小亮的位置(可用線段表示)及他在地?zé)粽丈湎峦对诖髲BBC上的影子;
(2)請(qǐng)你求出此時(shí)小亮的影長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)開展征文活動(dòng),征文主題只能從“愛(ài)國(guó)”“敬業(yè)”“誠(chéng)信”“友善”四個(gè)主題中選擇一個(gè),七年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,選擇“愛(ài)國(guó)”主題所對(duì)應(yīng)的圓心角是多少度?
(3)如果該校七年級(jí)共有1200名考生,請(qǐng)估計(jì)選擇以“友善”為主題的七年級(jí)學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)“雷鋒精神”,我縣開展“做雷鋒精神種子.當(dāng)四品八德少年”主題征文比賽,已知每篇參賽征文成績(jī)記分() ,組委會(huì)從篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績(jī),并繪制了如圖不完整的兩幅統(tǒng)計(jì)圖表.
縣主題征文比賽成績(jī)頻數(shù)分布表
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
合計(jì) |
縣主題征文比賽成績(jī)頻數(shù)分布直方圖
請(qǐng)根據(jù)以上信息,解決下列問(wèn)題:
(1)征文比賽成績(jī)頻數(shù)分布表中的值是 ;
(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖:
(3)若分以上(含分)的征文將被評(píng)為一等獎(jiǎng),請(qǐng)估算全縣獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海船以5海里/小時(shí)的速度向正東方向行駛,在A處看見燈塔B在海船的北偏東60°方向,2小時(shí)后船行駛到C處,發(fā)現(xiàn)此時(shí)燈塔B在海船的北偏西45°方向,求此時(shí)燈塔B到C處的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中,不能確定ABC 是直角三角形的條件是( )
A.A B=CB.A 2B 3C
C.A B CD.A 2B 2C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC位似,且位似比為2:1.
(2)點(diǎn)C1的坐標(biāo)為( , ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com