【題目】△ABC 是等邊三角形,點(diǎn) P 在△ABC 內(nèi),PA=2,將△PAB 繞點(diǎn) A 逆時針旋轉(zhuǎn)得到△P1AC,則 P1P 的長等于( )

A. 2 B. C. D. 1

【答案】A

【解析】

根據(jù)等邊三角形的性質(zhì)推出 AC=AB,∠CAB=60°,根據(jù)旋轉(zhuǎn)的性質(zhì)得出

△CP1A≌△BPA,推出AP1=AP,∠CAP1=∠BAP,求出∠PAP1=60°,得出△APP1

是等邊三角形,即可求出答案.

解:∵△ABC 是等邊三角形,

∴AC=AB,∠CAB=60°,

∵將△PAB 繞點(diǎn) A 逆時針旋轉(zhuǎn)得到△P1AC,

∴△CP1A≌△BPA,

∴AP1=AP,∠CAP1=∠BAP,

∴∠CAB=∠CAP+∠BAP=∠CAP+∠CAP1=60°, 即∠PAP1=60°,

∴△APP1 是等邊三角形,

∴P1P=PA=2,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+與直線AB交于點(diǎn)A(﹣1,0),B(4,),點(diǎn)D是拋物線A、B兩點(diǎn)間部分上的一個動點(diǎn)(不與點(diǎn)A、B重合),直線CDy軸平行,交直線AB于點(diǎn)C,連接AD,BD.

(1)求拋物線的表達(dá)式;

(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)AE重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個結(jié)論:

①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°

其中正確的結(jié)論的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司購進(jìn)一種商品的成本為30元/kg,經(jīng)市場調(diào)研發(fā)現(xiàn),這種商品在未來90天的銷售單價p(元/kg)與時間t(天)之間的相關(guān)信息如圖,銷售量y(kg)與時間t(天)之間滿足一次函數(shù)關(guān)系,且對應(yīng)數(shù)據(jù)如表,設(shè)第t天銷售利潤為w(元)

時間t(天)

10

30

每天的銷售量

y(kg)

180

140

(1)分別求出售單價p(元/kg)、銷售量y(kg)與時間t(天)之間的函數(shù)關(guān)系式;

(2)問:銷售該商品第幾天時,當(dāng)天的銷售利潤最大?并求出最大利潤;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為 BC上的點(diǎn),F(xiàn)為 CD邊上的點(diǎn),且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則yx之間的函數(shù)關(guān)系式是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】行駛中的汽車,在剎車后由于慣性的作用,還要向前方滑行一段距離才能停止,這段距離稱為剎車距離,為了測定某種型號的汽車的剎車性能(車速不超過140 km/h),對這種汽車進(jìn)行測試,測得數(shù)據(jù)如下表:

剎車時車速/km·h1

0

10

20

30

40

50

60

剎車距離/m

0

0.3

1.0

2.1

3.6

5.5

7.8

(1)以車速為x軸,以剎車距離為y軸,建立平面直角坐標(biāo)系,根據(jù)上表對應(yīng)值作出函數(shù)的大致圖象

(2)觀察圖象.估計函數(shù)的類型,并確定一個滿足這些數(shù)據(jù)的函數(shù)解析式;

(3)該型號汽車在國道發(fā)生了一次交通事故,現(xiàn)場測得剎車距離為46.5 m,推測剎車時的車速是多少?請問事故發(fā)生時,汽車是超速行駛還是正常行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,AB的垂直平分線DEBC延長線于E,ACF,A=40,AB+BC=6.

(1)BCF的周長為多少?

(2)E的度數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過點(diǎn)A的切線相交于點(diǎn)E.

(1)∠ACB=   °,理由是:   ;

(2)猜想△EAD的形狀,并證明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項目進(jìn)行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應(yīng)的圓心角度數(shù)為_____

(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

同步練習(xí)冊答案