【題目】如圖,在平面直角坐標(biāo)系中,過原點(diǎn)的直線與反比例函數(shù)交于點(diǎn),與反比例函數(shù) 交于點(diǎn),過點(diǎn)軸的垂線,過點(diǎn)軸的垂線,兩直線交于點(diǎn),若的面積為,則的值為_______

【答案】-2

【解析】

設(shè)A(a,)B(b,),ACx軸于點(diǎn)D,BCy軸于點(diǎn)E,易得DAO~ EOB,從而得,進(jìn)而得,由的面積為,得,進(jìn)而得到關(guān)于的方程,即可求解.

設(shè)A(a,),B(b,)ACx軸于點(diǎn)D,BCy軸于點(diǎn)E,由題意得:k0,a0b0,

,AD=OE=,

ADOE,ODBE

∴∠DAO=EOB,∠AOD=OBE,

DAO~ EOB

,即:,化簡得:

,

的面積為,

∴(b-a)(-=18,化簡:,

,即:,

,解得:(不合題意,舍去),

=-2

故答案是:-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)甲、乙兩種型號的商品。每件甲種商品的進(jìn)價比每件乙種商品的進(jìn)價少2元,且用80元購進(jìn)甲種商品的數(shù)量與用100元購進(jìn)乙種商品的數(shù)量相同.

1)求甲、乙兩種商品每件的進(jìn)價各為多少元;

2)每件甲種商品售價為12元,每件乙種商品售價為15元,該超市本次購進(jìn)甲種商品的數(shù)量比購進(jìn)乙種商品的數(shù)量的3倍少5件,要使兩種商品全部售出后所獲總利潤超過371元,求該超市本次至少購進(jìn)乙種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn)問題)

1)如圖1,已知△CAB和△CDE均為等邊三角形,DAC上,ECB上,易得線段ADBE的數(shù)量關(guān)系是   

2)將圖1中的△CDE繞點(diǎn)C旋轉(zhuǎn)到圖2的位置,直線AD和直線BE交于點(diǎn)F

判斷線段ADBE的數(shù)量關(guān)系,并證明你的結(jié)論;

2中∠AFB的度數(shù)是   

(探究拓展)

3)如圖3,若△CAB和△CDE均為等腰直角三角形,∠ABC=∠DEC90°,ABBCDEEC,直線AD和直線BE交于點(diǎn)F,分別寫出∠AFB的度數(shù),線段ADBE間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,AB是⊙O的一條弦,AP是⊙O的切線.作BMAB并與AP交于點(diǎn) M,延長MBAC于點(diǎn)E,交⊙O于點(diǎn)D,連接AD、BC

1)求證:ABBE

2)若BE3,OC,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)學(xué)生身體鍛煉,某校開展體育大課間活動,學(xué)校決定在學(xué)生中開設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動項(xiàng)目.為了了解學(xué)生對五種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:

1)在這項(xiàng)調(diào)查中,共調(diào)查了_______名學(xué)生;

2)請將兩個統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校有1200名在校學(xué)生,請估計(jì)喜歡排球的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知以的邊為直徑作的外接圓的平分線,交,過的延長線于

1)求證:切線;

2)若的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,點(diǎn)D、E分別是ABBC的中點(diǎn),過點(diǎn)CCFAB,與DE的延長線并交于點(diǎn)F,連接BF

1)試判斷四邊形CDBF的形狀,并說明理由;

2)若CD5sinCAB,過點(diǎn)CCHBF,垂足為H點(diǎn),試求CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)(1)如圖1,在ABC中,點(diǎn)DE,Q分別在AB,AC,BC上,且DEBCAQDE于點(diǎn)P.求證:.

2如圖,在ABC中,BAC=90°,正方形DEFG的四個頂點(diǎn)在ABC的邊上,連接AG,AF分別交DEM,N兩點(diǎn).

如圖2,若AB=AC=1,直接寫出MN的長;

如圖3,求證MN2=DM·EN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形對角線交于點(diǎn)邊分別為邊長作正方形正方形,連接

1)求證:

2)若,請求出的面積.

查看答案和解析>>

同步練習(xí)冊答案