【題目】已知a-7b=-2,則4-2a+14b的值是( ).
A. 0 B. 2 C. 4 D. 8
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個單位得到△A′B′C′.
(1)補全△A′B′C′,利用網(wǎng)格點和直尺畫圖;
(2)圖中AC與A1C1的關(guān)系是: ;
(3)畫出AB邊上的高線CD;
(4)畫出△ABC中AB邊上的中線CE;
(5)△BCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】瑞安市新行政區(qū)劃調(diào)整為5鎮(zhèn)10街道,市區(qū)總?cè)丝?87498人,將這個總?cè)丝跀?shù)保留兩個有效數(shù)字并用科學記數(shù)法表示,則為( ).
A.6.8×105 B.6.9×105 C.68×104 D.69×104
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙P在第一象限,半徑為3,動點A沿著⊙P運動一周,在點A運動的同時,作點A關(guān)于原點O的對稱點B,再以AB為底邊作等腰三角形△ABC,點C在第二象限,且sinA=0.8,點C隨點A運動所形成的圖形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上林老師出示了問題:如圖,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,點E是邊BC的中點,且EF交∠DCG的平分線CF于點F,求證:AE=EF.
同學們作了一步又一步的研究:
(1)、經(jīng)過思考,小明展示了一種解題思路:如圖1,取AB的中點M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,小明的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)、小穎提出一個新的想法:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(3)、小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立.小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F.將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N, 有下列四個結(jié)論:
① DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF. 其中,正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列多項式乘法算式中,可以用平方差公式計算的是( 。
A. (m﹣n)(n﹣m) B. (a+b)(﹣a﹣b) C. (﹣a﹣b)(a﹣b) D. (a+b)(a+b)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com