【題目】下列說法正確的是( )
A.同號兩數(shù)相乘,取原來的符號
B.一個數(shù)與﹣1相乘,積為該數(shù)的相反數(shù)
C.一個數(shù)與0相乘仍得這個數(shù)
D.兩個數(shù)相乘,積大于任何一個乘數(shù)
【答案】B
【解析】解:A、應為同號兩數(shù)相乘,積為正,故本選項錯誤;B、一個數(shù)與﹣1相乘,積為該數(shù)的相反數(shù)正確,故本選項正確;
C、應為一個數(shù)與0相乘等于0,故本選項錯誤;
D、兩個數(shù)相乘,積大于任何一個乘數(shù)錯誤,故本選項錯誤.
故選B.
【考點精析】認真審題,首先需要了解有理數(shù)的乘法法則(有理數(shù)乘法法則:1、兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘2、任何數(shù)同零相乘都得零3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定).
科目:初中數(shù)學 來源: 題型:
【題目】在矩形 中, , ,點 是 邊上一點,過點 作 ,交射線 于點 ,交射線 于點 .
(1)如圖1,若 ,則 度;
(2)當以 , , 為頂點的三角形是等邊三角形時,依題意在圖2中補全圖形并求 的長;
(3)過點 作 ∥ 交射線 于點 ,請?zhí)骄浚寒? 為何值時,以 , , , 為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c是△ABC的三邊長,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的兩根相等,則△ABC為( 。
A. 等腰三角形 B. 直角三角形 C. 等邊三角形 D. 任意三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課外小組為了解本校2014-2015學年八年級700名學生每學期參加社會實踐活動的時間,隨機對該年級50名學生進行了調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖(各組數(shù)據(jù)包括最小值,不包括最大值).
(1)補全下面的頻數(shù)分布表和頻數(shù)分布直方圖:
(2)可以估計這所學校2014-2015學年八年級的學生中,每學期參加社會實踐活動的時間不少于8小時的學生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BD平分∠ABC,點F在AB上,點G在AC上,連接FG、FC,F(xiàn)C與BD相交于點H,如果∠GFH與∠BHC互補.求證:∠1=∠2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一副直角三角板(角度分別為30°、60°、90°和45°、45°、90°),如圖(1)所示,其中一塊三角板的直角邊AC垂直于數(shù)軸,AC的中點過數(shù)軸原點O,AC=8,斜邊AB交數(shù)軸于點G,點G對應數(shù)軸上的數(shù)是4;另一塊三角板的直角邊AE交數(shù)軸于點F,斜邊AD交數(shù)軸于點H.
(1)如果△AGH的面積是10,△AHF的面積是8,則點F對應的數(shù)軸上的數(shù)是 , 點H對應的數(shù)軸上的數(shù)是;
(2)如圖(2),設∠AHF的平分線和∠AGH的平分線交于點M,若∠HAO=a,試用a來表示∠M的大。海▽懗鐾评磉^程)
(3)如圖(2),設∠AHF的平分線和∠AGH的平分線交于點M,設∠EFH的平分線和
∠FOC的平分線交于點N,求∠N+∠M的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCO中,O為坐標原點,A在y軸上,C在x軸上,B的坐標為(8,6),P是線段BC上動點,點D是直線y=2x﹣6上第一象限的點,若△APD是等腰直角三角形,則點D的坐標為_____________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),⊙C與y軸相切于D點,與x軸相交于A(2,0)、B(8,0)兩點,圓心C在第四象限.
(1)求點C的坐標;
(2)連接BC并延長交⊙C于另一點E,若線段BE上有一點P,使得AB2=BPBE,能否推出AP⊥BE?請給出你的結(jié)論,并說明理由;
(3)在直線BE上是否存在點Q,使得AQ2=BQEQ?若存在,求出點Q的坐標;若不存在,也請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com