【題目】在△ABC中,BC=3 ,AC=5,∠B=45°,對于下面四個結(jié)論:
①∠C一定是鈍角; ②△ABC的外接圓半徑為3;③sinA= ;④△ABC外接圓的外切正六邊形的邊長是 .其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:如圖1,過C作CD⊥AB于D,過A作AE⊥BC于E,
∵∠B=45°,
∴△BDC是等腰直角三角形,
∵BC=3 ,
∴BD=CD=3,
由勾股定理得:AD= = =4,
∴sin∠BAC= = ,
所以③正確;
由S△ABC= ABCD= CBAE,
∴7×3=3 AE,
AE= = ,
在Rt△ABE中,
BE= = = >BC=3 = ,
∴∠ACB>90°,
即∠C一定是鈍角;
所以①正確;
如圖2,設(shè)△ABC的外接圓的圓心為O,連接OA、OC,
∵∠B=45°,
∴∠AOC=2∠B=90°,
∵OA=OC,
∴△AOC是等腰直角三角形,
∵AC=5,
∴OA= = ,
則△ABC的外接圓半徑為 ;
所以②不正確;
如圖3,此正六邊形是△ABC的外接圓的外切正六邊形,
Rt△ODF中,由②得:OD= ,
由題意得:△OEF是等邊三角形,
∴∠OFE=60°,
tan60°= = ,
<>∴DF= × = ,∴EF=2DF= ,
則△ABC外接圓的外切正六邊形的邊長是 ,
所以④正確,
故本題正確的結(jié)論有:①③④;3個;
所以答案是:C.
【考點精析】認真審題,首先需要了解圓周角定理(頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半),還要掌握正多邊形和圓(圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上
一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點時.
①求證:四邊形BECD是菱形;
②當(dāng)∠A為多少度時,四邊形BECD是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是( )
A. ①②③④ B. ①② C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E,F(xiàn)分別是AC,AB邊上點,連接EF,將紙片ACB的一角沿EF折疊.
(1)如圖①,若折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△AEF , 則AE=;
(2)如圖②,若折疊后點A落在BC邊上的點M處,且使MF∥CA.求AE的長;
(3)如圖③,若折疊后點A落在BC延長線上的點N處,且使NF⊥AB.求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:
時間(分鐘) | 里程數(shù)(公里) | 車費(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題提出:如圖已知直線OA的解析式是y=2x,OC⊥OA,求直線OC的函數(shù)解析式.
甲同學(xué)提出了他的想法:在直線y=2x上取一點M,過M作x軸的垂線,垂足為D設(shè)點M的橫坐標為m,則點M的縱坐標為2m.即OD=m,MD=2m,然后在OC上截取ON=OM,過N作x軸的垂線垂足為B.則點N的坐標為 ,直線OC的解析式為 .
(2)拓展:已知直線OA的解析式是y=kx,OC⊥OA,求直線OC的函數(shù)解析式.
(3)應(yīng)用:直接寫出經(jīng)過P(2,3),且垂直于直線y=﹣x+2的直線解析式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=80°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O重合),連接AC交射線OE于點D.當(dāng)AB⊥OM,且△ADB有兩個相等的角時,∠OAC的度數(shù)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2),
(1)寫出點A、B的坐標:A(_____,_____)、B(_____,_____);
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,寫出A′、B′、C′三點坐標;
(3)求△ABC的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com