【題目】如圖1,矩形的一條邊長(zhǎng)為x,周長(zhǎng)的一半為y,定義(x,y)為這個(gè)矩形的坐標(biāo)。如圖2,在平面直角坐標(biāo)系中,直線x=1,y=3將第一象限劃分成4個(gè)區(qū)域,已知矩形1的坐標(biāo)的對(duì)應(yīng)點(diǎn)A落在如圖所示的雙曲線上,矩形2的坐標(biāo)的對(duì)應(yīng)點(diǎn)落在區(qū)域④中,則下面敘述中正確的是( )

A. 點(diǎn)A的橫坐標(biāo)有可能大于3

B. 矩形1是正方形時(shí),點(diǎn)A位于區(qū)域②

C. 當(dāng)點(diǎn)A沿雙曲線向上移動(dòng)時(shí),矩形1的面積減小

D. 當(dāng)點(diǎn)A位于區(qū)域①時(shí),矩形1可能和矩形2全等

【答案】D

【解析】

A、根據(jù)反比例函數(shù)k一定,并根據(jù)圖形得:當(dāng)x=1時(shí),y<3,得k=xy<3,因?yàn)?/span>y是矩形周長(zhǎng)的一半,即y>x,可判斷點(diǎn)A的橫坐標(biāo)不可能大于3;

B、根據(jù)正方形邊長(zhǎng)相等得:y=2x,得點(diǎn)A是直線y=2x與雙曲線的交點(diǎn),畫圖,如圖2,交點(diǎn)A在區(qū)域③,可作判斷;

C、先表示矩形面積S=x(y-x)=xy-x2=k-x2,當(dāng)點(diǎn)A沿雙曲線向上移動(dòng)時(shí),x的值會(huì)越來(lái)越小,矩形1的面積會(huì)越來(lái)越大,可作判斷;

D、當(dāng)點(diǎn)A位于區(qū)域①,得x<1,另一邊為:y-x>2,矩形2的坐標(biāo)的對(duì)應(yīng)點(diǎn)落在區(qū)域④中得:x>1,y>3,即另一邊y-x>0,可作判斷.

如圖,設(shè)點(diǎn)A(x,y),

A、設(shè)反比例函數(shù)解析式為:y=(k≠0),

由圖形可知:當(dāng)x=1時(shí),y<3,

k=xy<3,

y>x,

x<3,即點(diǎn)A的橫坐標(biāo)不可能大于3,

故選項(xiàng)A不正確;

B、當(dāng)矩形1為正方形時(shí),邊長(zhǎng)為x,y=2x,

則點(diǎn)A是直線y=2x與雙曲線的交點(diǎn),如圖2,交點(diǎn)A在區(qū)域③,

故選項(xiàng)B不正確;

C、當(dāng)一邊為x,則另一邊為y-x,S=x(y-x)=xy-x2=k-x2,

∵當(dāng)點(diǎn)A沿雙曲線向上移動(dòng)時(shí),x的值會(huì)越來(lái)越小,

∴矩形1的面積會(huì)越來(lái)越大,

故選項(xiàng)C不正確;

D、當(dāng)點(diǎn)A位于區(qū)域①時(shí),

∵點(diǎn)A(x,y),

x<1,y>3,即另一邊為:y-x>2,

矩形2落在區(qū)域④中,x>1,y>3,即另一邊y-x>0,

∴當(dāng)點(diǎn)A位于區(qū)域①時(shí),矩形1可能和矩形2全等;

故選項(xiàng)④正確;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB6,AD8,點(diǎn)E是邊AD上一點(diǎn),EMBCAB于點(diǎn)M,點(diǎn)N在射線MB上,且AEAMAN的比例中項(xiàng).

1)如圖1,求證:∠ANE=∠DCE

2)如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且ACNE互相垂直,求MN的長(zhǎng);

3)連接AC,如果AEC與以點(diǎn)EM、N為頂點(diǎn)所組成的三角形相似,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長(zhǎng)18千米的鄉(xiāng)村公路,已知甲工程隊(duì)比乙工程隊(duì)每天多修路0.6千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.

1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?

2)若甲工程隊(duì)每天的修路費(fèi)用為0.6萬(wàn)元,乙工程隊(duì)每天的修路費(fèi)用為0.5萬(wàn)元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過(guò)6.3萬(wàn)元,甲工程隊(duì)至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,拋物線yax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣2,0)、B4,0)、C03)三點(diǎn).

1)試求拋物線的解析式;

2)點(diǎn)Py軸上的一個(gè)動(dòng)點(diǎn),連接PA,試求5PA+4PC的最小值;

3)如圖②,若直線l經(jīng)過(guò)點(diǎn)T(﹣4,0),Q為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、Q為頂點(diǎn)所作的直角三角形有且僅有三個(gè)時(shí),試求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).

(1)求此拋物線的解析式;

(2)求C、D兩點(diǎn)坐標(biāo)及BCD的面積;

(3)若點(diǎn)P在x軸上方的拋物線上,滿足SPCD=SBCD,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形ABCD中,ADBCABAC,E是邊BC上的點(diǎn),且∠AED=∠CAD,DEAC于點(diǎn)F

1)求證:ABE∽△DAF;

2)當(dāng)ACFCAEEC時(shí),求證:ADBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某挖掘機(jī)的底座高AB=0.8米,動(dòng)臂BC=1.2米,CD=1.5米,BCCD的固定夾角∠BCD=140°.初始位置如圖1,斗桿頂點(diǎn)D與鏟斗頂點(diǎn)E所在直線DE垂直地面AM于點(diǎn)E,測(cè)得∠CDE=70°(示意圖2).工作時(shí)如圖3,動(dòng)臂BC會(huì)繞點(diǎn)B轉(zhuǎn)動(dòng),當(dāng)點(diǎn)A,BC在同一直線時(shí),斗桿頂點(diǎn)D升至最高點(diǎn)(示意圖4)

(1)求挖掘機(jī)在初始位置時(shí)動(dòng)臂BCAB的夾角∠ABC的度數(shù).

(2)問(wèn)斗桿頂點(diǎn)D的最高點(diǎn)比初始位置高了多少米(精確到0.1)?

(考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘輪船航行到 B 處時(shí),測(cè)得小島 A 在船的北偏東 60°的方向,輪船從 B 處繼續(xù)向正東方向航行 20 海里到達(dá) C 處時(shí),測(cè)得小島 A 在北船的北偏東 30°的方向.

(1)若小島 A 到這艘輪船航行路線 BC 的距離是 AD,求 AD 的長(zhǎng).

(2)已知在小島周圍 17 海里內(nèi)有暗礁,若輪船不改變航向繼續(xù)向前行駛,試問(wèn)輪船有無(wú)觸礁的危險(xiǎn)?(≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測(cè)量某廣告牌的寬度圖中線段MN的長(zhǎng),直線MN垂直于地面,垂足為點(diǎn)在地面A處測(cè)得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測(cè)得點(diǎn)M的仰角為,米,且A、BP三點(diǎn)在一直線上請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長(zhǎng).

參考數(shù)據(jù):,,,,

查看答案和解析>>

同步練習(xí)冊(cè)答案