【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為( )
【答案】A.
【解析】
試題分析::設(shè)∠AOM=α,點(diǎn)P運(yùn)動(dòng)的速度為a,當(dāng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A的過程中,S==a2cosαsinαt2,由于α及a均為常量,從而可知圖象本段應(yīng)為拋物線,且S隨著t的增大而增大;當(dāng)點(diǎn)P從A運(yùn)動(dòng)到B時(shí),由反比例函數(shù)性質(zhì)可知△OPM的面積為k,保持不變,故本段圖象應(yīng)為與橫軸平行的線段;當(dāng)點(diǎn)P從B運(yùn)動(dòng)到C過程中,OM的長(zhǎng)在減少,△OPM的高與在B點(diǎn)時(shí)相同,故本段圖象應(yīng)該為一段下降的線段;故答案選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是 .
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(5)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果代數(shù)式-2a+3b+5的值為12,那么代數(shù)式9b-6a+2的值等于( )
A.23 B.-23 C.19D.-19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巴黎與北京的時(shí)間差為﹣7時(shí)(正數(shù)表示同一時(shí)刻比北京時(shí)間早的時(shí)數(shù)),如果北京時(shí)間是7月2日14:00,那么巴黎時(shí)間是( )
A. 7月2日21時(shí) B. 7月2日7時(shí) C. 7月1日7時(shí) D. 7月2日5時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(-5,y1),(1,0),(6,y2)都在一次函數(shù)y=kx-2的圖象上,則y1,y2,0的大小關(guān)系是( )
A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣x+b與拋物線的另一個(gè)交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中所用時(shí)間最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)P從A點(diǎn)出發(fā)沿A→C→B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以每秒1cm和3cm的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設(shè)運(yùn)動(dòng)時(shí)間為t秒,則當(dāng)t=_________秒時(shí),△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com