如圖1所示,已知二次函數(shù)y=ax2-6ax+c與x軸分別交于點A(2,0)、B(4,0),與y軸交于點C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點D的坐標(用含t的代數(shù)式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點O的對應點O′恰好落在該拋物線的對稱軸上,求實數(shù)t的值;
(3)如圖2,在正方形EFGH中,點E、F的坐標分別是(4,-4)、(4,-3),邊HG位于邊EF的右側.若點P是邊EF或邊FG上的任意一點(不與E、F、G重合),請你說明以PA、PB、PC、PD的長度為邊長不能構成平行四邊形;
(4)將(3)中的正方形EFGH水平移動,若點P是正方形邊FG或EH上任意一點,在水平移動過程中,是否存在點P,使以PA、PB、PC、PD的長度為邊長構成平行四邊形,其中PA、PB為對邊.若存在,請直接寫出t的值;若不存在,請說明理由.

【答案】分析:(1)將A、B、C三點的坐標代入已知的拋物線的解析式利用待定系數(shù)法及其求得a、c的值,配方后即可確定其頂點坐標;
(2)設拋物線對稱軸與x軸交點為M,則可得到AM=1,然后根據(jù)O′A=OA=2得到O′A=2AM,最后在Rt△OAC中,利用OC和OA的關系列出有關t的方程求得t值即可.
(3)本題需先分兩種情況進行討論,當P是EF上任意一點時,可得PC>PB,從而得出PB≠PA,PB≠PC,PB≠PD,即可求出線段PA、PB、PC、PD不能構成平行四邊形.
(4)分假設點P為FG與對稱軸交點時,存在一個正數(shù)t,使得線段PA、PB、PC、PD能構成一個平行四邊形和假設當點P為EH與對稱軸交點時,存在一個正數(shù)t,使得線段PA、PB、PC、PD能構成一個平行四邊形兩種情況列出有關的方程求得t值即可.
解答:解:(1)把點A、C的坐標(2,0)、(0,-8t)代入拋物線y=ax2-6ax+c得,,解得  ,
該拋物線為y=-tx2+6tx-8t=-t(x-3)2+t.
∴頂點D坐標為(3,t)                              
(2)如圖1,設拋物線對稱軸與x軸交點為M,則AM=1.
由題意得:O′A=OA=2.
∴O′A=2AM,∴∠O′AM=60°.
∴∠O′AC=∠OAC=60°
∴在Rt△OAC中:
∴OC=

.        
(3)①如圖2所示,設點P是邊EF上的任意一點
(不與點E、F重合),連接PM.
∵點E(4,-4)、F(4,-3)與點B(4,0)在一直線上,
點C在y軸上,
∴PB<4,PC≥4,∴PC>PB.
又PD>PM>PB,PA>PM>PB,
∴PB≠PA,PB≠PC,PB≠PD.
∴此時線段PA、PB、PC、PD不能構成平行四邊形.
②設P是邊FG上的任意一點(不與點F、G重合),
∵點F的坐標是(4,-3),點G的坐標是(5,-3).
∴FB=3,,∴3≤PB≤
∵PC>4,∴PC>PB.
∴PB≠PA,PB≠PC.
∴此時線段PA、PB、PC、PD不能構成平行四邊形.        
(4)t=或1.                               
∵已知PA、PB為平行四邊形對邊,
∴必有PA=PB.
①假設點P為FG與對稱軸交點時,存在一個正數(shù)t,使得線段PA、PB、PC、PD能構成一個平行四邊形.
如圖3所示,只有當PC=PD時,線段PA、PB、PC、PD能構成一個平行四邊形.
∵點C的坐標是(0,-8t),點D的坐標是(3,t),
又點P的坐標是(3,-3),
∴PC2=32+(-3+8t)2,PD2=(3+t)2
當PC=PD時,有PC2=PD2
即 32+(-3+8t)2=(3+t)2
整理得7t2-6t+1=0,
∴解方程得t=>0滿足題意.
②假設當點P為EH與對稱軸交點時,存在一個正數(shù)t,使得線段PA、PB、PC、PD能構成一個平行四邊形.
如圖4所示,只有當PC=PD時,線段PA、PB、PC、PD
能構成一個平行四邊形.
∵點C的坐標是(0,-8t),點D的坐標是(3,t),
點P的坐標是(3,-4),
∴PC2=32+(-4+8t)2,PD2=(4+t)2
當PC=PD時,有PC2=PD2
即 32+(-4+8t)2=(4+t)2
整理得7t2-8t+1=0,
∴解方程得t=或1均大于>0滿足題意.
綜上所述,滿足題意的t=或1.
點評:本題主要考查了二次函數(shù)的綜合問題,在解題時要注意運用數(shù)形結合和分類討論,把二次函數(shù)的圖象與性質和平行四邊形的判定相結合是本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•鄭州模擬)如圖1所示,已知二次函數(shù)y=ax2-6ax+c與x軸分別交于點A(2,0)、B(4,0),與y軸交于點C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點D的坐標(用含t的代數(shù)式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點O的對應點O′恰好落在該拋物線的對稱軸上,求實數(shù)t的值;
(3)如圖2,在正方形EFGH中,點E、F的坐標分別是(4,-4)、(4,-3),邊HG位于邊EF的右側.若點P是邊EF或邊FG上的任意一點(不與E、F、G重合),請你說明以PA、PB、PC、PD的長度為邊長不能構成平行四邊形;
(4)將(3)中的正方形EFGH水平移動,若點P是正方形邊FG或EH上任意一點,在水平移動過程中,是否存在點P,使以PA、PB、PC、PD的長度為邊長構成平行四邊形,其中PA、PB為對邊.若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年河南省鄭州市中考第二次質量預測數(shù)學試卷(解析版) 題型:解答題

如圖1所示,已知二次函數(shù)y=ax2-6ax+c與x軸分別交于點A(2,0)、B(4,0),與y軸交于點C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點D的坐標(用含t的代數(shù)式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點O的對應點O′恰好落在該拋物線的對稱軸上,求實數(shù)t的值;
(3)如圖2,在正方形EFGH中,點E、F的坐標分別是(4,-4)、(4,-3),邊HG位于邊EF的右側.若點P是邊EF或邊FG上的任意一點(不與E、F、G重合),請你說明以PA、PB、PC、PD的長度為邊長不能構成平行四邊形;
(4)將(3)中的正方形EFGH水平移動,若點P是正方形邊FG或EH上任意一點,在水平移動過程中,是否存在點P,使以PA、PB、PC、PD的長度為邊長構成平行四邊形,其中PA、PB為對邊.若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年河北省中考數(shù)學模擬試卷(十六)(解析版) 題型:解答題

如圖1所示,已知二次函數(shù)y=ax2-6ax+c與x軸分別交于點A(2,0)、B(4,0),與y軸交于點C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點D的坐標(用含t的代數(shù)式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點O的對應點O′恰好落在該拋物線的對稱軸上,求實數(shù)t的值;
(3)如圖2,在正方形EFGH中,點E、F的坐標分別是(4,-4)、(4,-3),邊HG位于邊EF的右側.若點P是邊EF或邊FG上的任意一點(不與E、F、G重合),請你說明以PA、PB、PC、PD的長度為邊長不能構成平行四邊形;
(4)將(3)中的正方形EFGH水平移動,若點P是正方形邊FG或EH上任意一點,在水平移動過程中,是否存在點P,使以PA、PB、PC、PD的長度為邊長構成平行四邊形,其中PA、PB為對邊.若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年河南省鄭州市中考第二次質量預測數(shù)學試卷(解析版) 題型:解答題

如圖1所示,已知二次函數(shù)y=ax2-6ax+c與x軸分別交于點A(2,0)、B(4,0),與y軸交于點C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點D的坐標(用含t的代數(shù)式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點O的對應點O′恰好落在該拋物線的對稱軸上,求實數(shù)t的值;
(3)如圖2,在正方形EFGH中,點E、F的坐標分別是(4,-4)、(4,-3),邊HG位于邊EF的右側.若點P是邊EF或邊FG上的任意一點(不與E、F、G重合),請你說明以PA、PB、PC、PD的長度為邊長不能構成平行四邊形;
(4)將(3)中的正方形EFGH水平移動,若點P是正方形邊FG或EH上任意一點,在水平移動過程中,是否存在點P,使以PA、PB、PC、PD的長度為邊長構成平行四邊形,其中PA、PB為對邊.若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案